Skip to main content
Log in

Mechanical modelling of the universal superplastic curve

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical response of various combinations of non-linear viscous elements (dashpots) is analysed in this paper. It is assumed that the properties of i-th element can be described by the relation σi = K i ξ mii , where σ i is the stress, ξi is the strain rate, Ki and mi are constants 0 ≤ mi ≤ 1). Parallel, series and combined combinations are considered. The main object is to find out the potential for various combinations to describe the sigmoidal variation of the flow stress, σ, with the strain rate, ξ, which is a typical feature of superplastic materials. It is found that elements are connected in parallel as well as elements are connected in series are characterised by non-sigmoidal dependency of the net stress σ on the net strain rate ξ. At the same time a mixed combination with two elements in parallel connected with a third one in series is shown to describe the sigmoidal curve with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Edington, K. N. Melton and C. P. Cutler, Progress in Materials Science 21 (1976) 63.

    Google Scholar 

  2. T. G. Langdon, Metal. Trans. 13A (1982) 689.

    Google Scholar 

  3. K. A. Padmanabhan and J. J. Davies, “Superplasticity,” (Springer-Verlag, Berlin, Germany, 1980) p. 314 c.

    Google Scholar 

  4. J. Pilling and N. Ridley, “Superplasticity in Crystalline Solids,” The Institute of Metals (The Camelot Press, London, 1989).

    Google Scholar 

  5. O. D. Sherby and J. Wadsworth, Progr. In Mat. Sci. 33 (1989) 169.

    Google Scholar 

  6. O. A. Kaibyshev, “Superplasticity in Alloys, Intermetallides and Ceramics,” (Springer-Verlag, Berlin, Heidelberg, 1992) p. 317.

    Google Scholar 

  7. J. Hedworth and M. J. Stowell, J. Mater. Sci. 6 (1971) 1061.

    Google Scholar 

  8. F. U. Enikeev and M. I. Mazurski, Scripta Metall. 32 (1995) 1.

    Google Scholar 

  9. R. A Vasin, F. U. Enikeev and M. I. Mazurski, Mater. Sci. Eng. A224 (1997) 131.

    Google Scholar 

  10. F. U. Enikeev and A. A. Kruglov, Int. J. Mech. Sci. 37 (1995) 473.

    Google Scholar 

  11. R. A Vasin, F. U. Enikeev and M. I. Mazurski, J. Mater. Sci. 33 (1998) 1099.

    Google Scholar 

  12. F. U. Enikeev, Mater. Sci. Forum 243-245 (1997) 77.

    Google Scholar 

  13. R. A Vasin, F. U. Enikeev and M. I. Mazurski, Mater. Sci. Eng. 255 (1998) 169.

    Google Scholar 

  14. V. N. Perevezentsev, V. V. Rybin and V. N. Chuvil'deev, Acta Metall. Material. 40 (1992) 887.

    Google Scholar 

  15. A. K. Ghosh, Mater. Sci. Forum 170-172 (1994) 39.

    Google Scholar 

  16. K. A. Padmanabhan and J. Schlipf, Mater. Sci. and Techn. 12 (1996) 391.

    Google Scholar 

  17. A. I. Pshenichnyuk, V. V. Astanin and O. A. Kaibyshev, Phil. Mag. A 77 (1998) 1093

    Google Scholar 

  18. T. G. Langdon, Mater. Sci. Eng. A174 (1994) 225.

    Google Scholar 

  19. R. Z. Valiev and O. A. Kaibyshev,Acta metal. 31 (1983) 2121.

    Google Scholar 

  20. G. A. Salishchev, R. M. Galejev and R. M. Imayev, in “Superplasticity in Advanced Materials,” edited by S. Hori, M. Tokizane and N. Furushiro (The Japan Society for Research on Superplasticity, 1991) p. 163.

  21. P. L. Blackwell and P. S. Bate, Metall. Trans. A 24A (1993) 1085.

    Google Scholar 

  22. V. S. Levchenko, V. K. Portnoy and I. I. Novikov, Unusal low grain boundary sliding in aluminium alloy with classical features of micrograin superplasticity. In: Hori, S., Tokizane, M., Furushiro, N., eds. (1991): Superplasticity in Advanced Materials, ICSAM-91, JSRS, Osaka, Japan, 1991, pp. 39-44.

    Google Scholar 

  23. P. L. Blackwell and P. S. Bate, Metall. Trans. A 27A (1996) 3747.

    Google Scholar 

  24. M. I. Mazurski and F. U. Enikeev, Physica Status Solidi 206 (1998) 519.

    Google Scholar 

  25. A. A. Sirenko, M. A. Murzinova, F. U. Enikeev, J. of Mater. Sci. Letters 14 (1995) 773.

    Google Scholar 

  26. R. M. Imayev and V. M. Imayev, Scripta Metallurgica 25 (1991) 2041.

    Google Scholar 

  27. N. G. Zaripov, O. A. Kaibyshev and O. M. Kolnogorov, Phys. Solids 35 (1993) 2114 (in Russian).

    Google Scholar 

  28. N. G. Zaripov, O. A. Kaibyshev, L. V. Petrova and O. Yu. Efimov, J. Mater. Sci. Letters 12 (1993) 502.

    Google Scholar 

  29. H. Iwasaki, K. Higashi, S. Tahimura, T. Komatubara and S. Hayami, in “Proc. Int. Conf., Superplasticity in Advanced Materials,” edited by S. Hori, M. Tokizane, N. Furushiro (Jap. Soc. Res. on Superplasticity, Osaka, Japan, 1991) p. 447.

    Google Scholar 

  30. A. K. Ghosh and C. H. Cheng, ibid. 299.

  31. S. L. Stoner and A. K. Mukherjee, ibid. 323.

  32. F. H. Mohamed, J. Mat. Sci. Ltrs 7 (1988) 215.

    Google Scholar 

  33. G. S. Murty and S. Banerjee, Scripta Metallurgica 31 (1994) 707.

    Google Scholar 

  34. S. W. Zehr and W. A. Backofen, Trans. Am. Soc. Metals 61 (1968) 300.

    Google Scholar 

  35. A. K. Ghosh, in “Superplastic Forming of Structural Alloys,” edited by N. E. Paton and C. H. Hamilton (Publ. TMS-AIME, Warrendale, Pensylvania, 1982) p. 85.

    Google Scholar 

  36. H. E. Cline and T. H. Alden, Trans AIME 239 (1967) 710.

    Google Scholar 

  37. J. A. Martin and W. A. Backofen, ASM Trans Quart 60 (1967) 352.

    Google Scholar 

  38. F. U. Enikeev, K. A. Padmanabhan and S. S. Bhattacharya, Mater. Sci. Technol. 15 (1999) 673.

    Google Scholar 

  39. R. A. Vasin, F. U. Enikeev and M. I. Mazurski, in “Proceed. of Int. Sem. on Microstructure, Micromechanics and Processing of Superplastic Materials (IMSP 97), Mie University, Tsu, Japan, 7-9 August 1997,” edited by T. Aizawa, K. Higashi and M. Tokuda (Mie University Press) p. 223.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasin, R.A., Enikeev, F.U., Mazurski, M.I. et al. Mechanical modelling of the universal superplastic curve. Journal of Materials Science 35, 2455–2466 (2000). https://doi.org/10.1023/A:1004761501240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004761501240

Keywords

Navigation