Skip to main content
Log in

On-Chip Refrigeration by Evaporation of Hot Electrons at Sub-Kelvin Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Evaporation of hot electrons from a normal-metal into a superconductor can be used for efficient Peltier type cooling in micrometer size tunnel junctions. We have cooled the electrons to one third,1 and, as the main result of the present paper, a separate silicon nitride membrane to about one half of its starting temperature; all results have been obtained at temperatures well below 1K, where the lattice is weakly coupled to electrons thermally. The micromachined membrane can serve as a thermal bath for tiny samples, like bolometric radiation detectors in astronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. M. Leivo, J. P. Pekola, and D. V. Averin, Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions, Appl. Phys. Lett. 68, 1996-1998 (1996).

    Google Scholar 

  2. O. V. Lounasmaa, Experimental Principles and Methods Below 1 K, Academic Press Ltd., London (1974).

    Google Scholar 

  3. F. Pobell, Matter and Methods at Low Temperatures, Springer-Verlag, Germany (1996).

    Google Scholar 

  4. M. Nahum, T. M. Eiles, and J. M. Martinis, Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction, Appl. Phys. Lett. 65, 3123-3125 (1994).

    Google Scholar 

  5. H. L. Edwards, Q. Niu, G. A. Georgakis, and A. L. de Lozanne, Cryogenic cooling using tunneling structures with sharp energy features, Phys. Rev. B 52, 5714-5736 (1995). Street, Traverse Supercool AB, P.O. USA.

    Google Scholar 

  6. M. M. Leivo, A. J. Manninen, and J. P. Pekola, Microrefrigeration by normal-metal/insulator/superconductor tunnel junctions, Applied Superconductivity 5, 227-233 (1998).

    Google Scholar 

  7. M. L. Roukes, M. R. Freeman, R. S. Germain, and R. C. Richardson, Hot electrons and energy transport in metals at millikelvin temperatures, Phys. Rev. Lett. 55, 422-425 (1985).

    Google Scholar 

  8. F. C. Wellstood, C. Urbina, and J. Clarke, Hot-electron effects in metals, Phys. Rev. B 49, 5942-5955 (1994).

    Google Scholar 

  9. G. J. Dolan, Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337-339 (1977).

    Google Scholar 

  10. M. Nahum and J. M. Martinis, Ultrasensitive hot-electron microbolometer, Appl. Phys. Lett. 63, 3075-3077 (1993).

    Google Scholar 

  11. R. G. Melton, J. L. Paterson, and S. B. Kaplan, Superconducting tunnel-junction refrigerator, Phys. Rev. B 21, 1858-1867 (1981) of a (1999).

    Google Scholar 

  12. P. A. Fisher, J. N. Ullom, and M. Nahum, High-power on-chip microrefrigerator based on a normal-metal/insulator/superconductor tunnel junction, Appl. Phys. Lett. 74, 2705-2707 (1999).

    Google Scholar 

  13. M. M. Leivo and J. P. Pekola, Thermal characteristics of silicon nitride membranes at sub-kelvin temperatures, Appl. Phys. Lett. 72, 1305-1307 (1998).

    Google Scholar 

  14. D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, and M. Manninen, Properties of the phonon gas in ultrathin membranes at low temperature, Phys. Rev. Lett. 81, 2958-2961 (1998).

    Google Scholar 

  15. D. V. Anghel and M. Manninen, Behavior of the phonon gas in restricted geometries at low temperatures, Phys. Rev. B 59, 9854-9857 (1999).

    Google Scholar 

  16. A. J. Manninen, M. M. Leivo, and J. P. Pekola, Refrigeration of a dielectric membrane by superconductor/insulator/normal/metal/ insulator/superconductor tunneling, Appl. Phys. Lett. 70, 1885-1887 (1997).

    Google Scholar 

  17. S. B. Kaplan et al., Quasiparticle and phonon lifetimes in superconductors, Phys. Rev. B 14, 4854-4873 (1976).

    Google Scholar 

  18. J. P. Pekola, D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J. Manninen, and M. Manninen, Trapping of quasiparticles of a non-equilibrium superconductor, submitted (1999).

  19. P. L. Richards, Bolometers for infrared and millimeter waves, J. Appl. Phys. 76, 1-24 (1994).

    Google Scholar 

  20. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, A superconducting bolometer with strong electrothermal feedback, Appl. Phys. Lett. 69, 1801-1803 (1996).

    Google Scholar 

  21. K. D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection, Appl. Phys. Lett 66, 1998-2000, (1995).

    Google Scholar 

  22. L. S. Kuzmin, D. S. Golubev, and I. A. Devyatov, Cold-electron bolometer with electronic microrefrigeration and general noise analysis, Proc. SPIE 3465, 193-199 (1998).

    Google Scholar 

  23. A. Luukanen and J. P. Pekola, On-chip cooling of superconducting transition-edge microbolometers and calorimeters, in preparation (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luukanen, A., Leivo, M.M., Suoknuuti, J.K. et al. On-Chip Refrigeration by Evaporation of Hot Electrons at Sub-Kelvin Temperatures. Journal of Low Temperature Physics 120, 281–290 (2000). https://doi.org/10.1023/A:1004693929689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004693929689

Keywords

Navigation