Skip to main content
Log in

Low-loss dielectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-loss dielectrics are important technologically as insulators but there is little understanding of the physical causes of this property and even their spectral response is not well documented—this study has revealed a number of different types of behaviour which do not appear to have been recognised previously. Most low-loss materials show a “flat”, nearly frequency-independent loss, but while some follow the “universal” fractional power law of frequency dependence which is widely applicable to more lossy materials, some are very different and require a fresh approach to their interpretation. It is pointed out that low-loss behaviour is not necessarily connected with the absence of impurity dipoles and the recently introduced concept of dipolar screening may explain low-loss behaviour in impure materials. The universal response is shown to be only one of several forms of dielectric behaviour and examples are given of possible alternative forms which may explain the apparent incompatibility of some experimental data with Kramers-Kronig relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K.Jonscher, “Dielectric Relaxation in Solids” (Chelsea Dielectrics Press, London, 1996).

    Google Scholar 

  2. A. K.Jonscher, “Universal Relaxation Law” (Chelsea Dielectrics Press, London, 1996).

    Google Scholar 

  3. Junie Wu D. S.Mclachlan,Phys. Rev. B 56(1997) 1236–1248.

    Article  Google Scholar 

  4. J.Menegotto, private communication.

  5. D. S.Mclachlan, private communication.

  6. Aishah Isnin A. K.Jonscher,Ferroelectrics 210 (1998) 47–65.

    Google Scholar 

  7. A. K.Jonscher, C.L´eon J.Santamaria,J.Mater. Sci.33(18) (1998).

  8. R. S.Lim, A. V.Vaysleyb A. S.Nowick,Appl. Phys. A56(1993) 8–14.

    Google Scholar 

  9. A. K.Jonscher Aishah Isnin,Ferroelectrics 210 (1998) 67–81.

    Google Scholar 

  10. L. A.Dissado R. M.Hill,Proc. Roy. Soc. Lond. A390 (1983) 131–180.

    Google Scholar 

  11. G. A.Niklasson,J. Appl. Phys.62(1987) R1-R14.

    Google Scholar 

  12. R. M.Hill, L. A.Dissado R. R.Nigmatullin,J. Phys. C: Condensed Matter 3(1991) 9773–9790.

    Google Scholar 

  13. R. R.Nigmatullin,Physica Status Solidi (b)133(1986) 425–430.

    Google Scholar 

  14. J. C.Dyre,J. Appl. Phys. 64(1988) 2456–24668.

    Google Scholar 

  15. Idem.,J. Non-Cryst. Solids 135 (1991) 219–226.

    Google Scholar 

  16. K. L.Ngai, ibid.203 (1996) 232–245.

    Google Scholar 

  17. M. P. JVan Staveren, H. B.Brom L. J. DEJongh, Physics Reports208(1991) 1–9.

    Google Scholar 

  18. A.Hunt,Journal of Physics-Condensed Matter 2(1990) 9055–9063.

    Google Scholar 

  19. K.Weron,J. Phys: Condensed Matter 3(1991) 221–223.

    Google Scholar 

  20. Idem., ibid.3(1991) 9151–9162.

  21. K.Weron A.Jurlewicz,J. Phys. A: Math. Gen. 26 (1993) 395–410.

    Google Scholar 

  22. H. J.Queisser,Appl. Phys. A52(1991) 261–264.

    Google Scholar 

  23. S.Bozdemir,Phys. Status Solid (b)103 (1981) 459–470.

    Google Scholar 

  24. Idem., ibid.104(1981) 37–47.

  25. A. K.Jonscher,J. Mater. Sci.32(1997) 6409–6414.

    Google Scholar 

  26. Idem.,Appl. Phys. A 56(1993) 405–408.

    Google Scholar 

  27. S.Havriliak Jr., private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonscher, A.K. Low-loss dielectrics. Journal of Materials Science 34, 3071–3082 (1999). https://doi.org/10.1023/A:1004640730525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004640730525

Keywords

Navigation