Skip to main content
Log in

Interplay of Fulde–Ferrell–Larkin–Ovchinnikov and Vortex States in Two-Dimensional Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Clean superconductors with weakly coupled conducting planes have been suggested as promising candidates for observing the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state. We consider here a layered superconductor in a magnetic field of arbitrary orientation with respect to the conducting plane. In this case there is competition of Pauli spin-pair-breaking effects, favoring the FFLO state, and orbital-pair-breaking effects, favoring the Abrikosov vortex state. In previous work, phase transitions to phases with pairing in Landau levels with quantum numbers n > 0 have been predicted. Here, we calculate the actual structure of the stable states below H c2 by minimizing the free energy. We find new order parameter structures differing from both the traditional Abrikosov and FFLO solutions. These include two-dimensional periodic structures with several zeros of the order parameter, as well as quasi-one-dimensional structures consisting of vortex chains separated by FFLO domains. We discuss the limit of high n, where some interesting but yet unsolved questions appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1957).

    Google Scholar 

  2. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Google Scholar 

  3. I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997).

    Google Scholar 

  4. C. Bernhard et al., preprint cond-mat/9901084, 1999.

  5. R. Weht, A. B. Shick, and W. E. Pickett, preprint cond-mat/9903210, 1999.

  6. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Google Scholar 

  7. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

    Google Scholar 

  8. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 28, 1200 (1969).

    Google Scholar 

  9. L. W. Gruenberg and L. Gunther, Phys. Rev. Lett. 16, 996 (1966).

    Google Scholar 

  10. M. Tachiki, S. Takahashi, P. Gegenwart, M. Weiden, M. Lang, C. Geibel, F. Steglich, R. Modler, C. Paulsen, Y. Onuki, Z. Physik B 100, 369 (1996).

    Google Scholar 

  11. K. Aoi, W. Dieterich, and P. Fulde, Z. Physik 267, 223 (1973).

    Google Scholar 

  12. H. Shimahara, J. Phys. Soc. Jpn. 66, 541 (1997).

    Google Scholar 

  13. G. Yin and K. Maki, Phys. Rev. B 48, 650 (1993).

    Google Scholar 

  14. N. Dupuis, Phys. Rev. B 51, 9074 (1995).

    Google Scholar 

  15. A. I. Buzdin and M. L. Kulic, J. Low Temp. Phys. 54, 203 (1984).

    Google Scholar 

  16. H. Burkhardt and D. Rainer, Ann. Physik 3, 181 (1994).

    Google Scholar 

  17. H. Shimahara, J. Phys. Soc. Jpn. 67, 736 (1998).

    Google Scholar 

  18. L. N. Bulaevskii, Sov. Phys. JETP 38, 634 (1974).

    Google Scholar 

  19. H. Shimahara and D. Rainer, J. Phys. Soc. Jpn. 66, 3591 (1997).

    Google Scholar 

  20. L. W. Gruenberg and L. Gunther, Phys. Rev. 176, 606 (1968).

    Google Scholar 

  21. Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. Lett. 63, 2425 (1989).

    Google Scholar 

  22. A. G. Lebed, K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).

    Google Scholar 

  23. M. R. Norman, H. Akera, and A. H. MacDonald, Physica C 196, 43 (1992).

    Google Scholar 

  24. G. Eilenberger, Z. Physik 214, 195 (1968).

    Google Scholar 

  25. J. A. X. Alexander, T. P. Orlando, D. Rainer, and P. M. Tedrow, Phys. Rev. B 31, 5811 (1985).

    Google Scholar 

  26. U. Klein, Phys. Rev. B 40, 6601 (1989).

    Google Scholar 

  27. E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

    Google Scholar 

  28. U. Klein, J. Low Temp. Phys. 69, 1 (1987).

    Google Scholar 

  29. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  30. H. Akera, A. H. MacDonald, and S. M. Girvin Phys. Rev. Lett. 67, 2375 (1991).

    Google Scholar 

  31. C. T. Rieck, K. Scharnberg, and N. Schopohl, J. Low Temp. Phys. 84, 381 (1991).

    Google Scholar 

  32. G. Eilenberger, Phys. Rev. 153, 584 (1967).

    Google Scholar 

  33. J. Rammer and W. Pesch J. Low Temp. Phys. 77, 235 (1989).

    Google Scholar 

  34. G. Eilenberger, Z. Physik 180, 32 (1964).

    Google Scholar 

  35. J. M. Delrieu, J. Low Temp. Phys. 6, 197 (1972).

    Google Scholar 

  36. U. Klein, to be published.

  37. Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. B 43, 288 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, U., Rainer, D. & Shimahara, H. Interplay of Fulde–Ferrell–Larkin–Ovchinnikov and Vortex States in Two-Dimensional Superconductors. Journal of Low Temperature Physics 118, 91–104 (2000). https://doi.org/10.1023/A:1004630620483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004630620483

Keywords

Navigation