Skip to main content
Log in

Characterization of soil organic matter from a sandy soil in relation to management practice using FT-IR spectroscopy

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Previous results from differently fertilized long-term field experiments on a sandy soil suggested that the chemical composition of soil organic matter (SOM) is affected by fertilization. The objective of this paper is to confirm this finding for a site with higher soil-clay contents. Four combinations of different fertilizer treatments at long-term field experiment located at a sandy loam were selected: liquid manure (LM), liquid manure+N (LM+N), straw+N (S+N) and mineral nitrogen only (N). Soil organic matter was extracted using sodium pyrophosphate solution at pH of 10 and hot water. The extracts were analyzed using Fourier-Transform infrared spectroscopy. The results indicate that the composition of SOM from the hot water extracts did not show significant differences while the sodium pyrophosphate extracted SOM is affected by the type of fertilization. Soil samples fertilized with LM+N and S+N show the highest intensity of the carboxyl band. This can be explained by the fact that the combination of S+N fertilization with green manure leads to an enrichment of carboxyl groups in SOM. Differences between the band intensities of the treatments for the SOM samples are, however, not as distinct as for the sandy soil samples. This is possibly a result of the higher clay content and lower age of the long-term experiment at the sandy loam site. The intensity of the carboxyl band of the SOM is correlated with the cation exchange capacity of the soil samples. The composition of SOM may, in addition to the SOM content, be used for studying quantitative effects of different management practices or even land use changes on soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Autorenkollektiv 1984 Organikum. VEB Deutscher Verlag der Wissenschaften, Berlin.

  • BioRad 1996a FTS 135 WIN-IR foundation manual. BioRad technical publications 091–0912A, 128–130.

  • BioRad 1996b WIN-IR search manual. BioRad technical publications. Cambridge, USA.

    Google Scholar 

  • Candler R, ZechWand Alt H G 1989 A comparison of water soluble organic substances in acid soils under beech and spruce in NEBavaria. Zeitschrift für Pflanzenernährung und Bodenkunde 152, 61–65.

    CAS  Google Scholar 

  • Capriel P, Härter P and Stephenson D 1992 Influence of management on organic matter of a mineral soil. Soil Sci. 153, 122–128.

    Google Scholar 

  • Celi I, Schnitzer M. and Negre M. 1997 Analysis of carboxylic groups in soil humic acids by a wet chemical method, FT-IR spectrometry and solution 13C NMR. A comparative study. Soil Sci. 162, 189–197.

    Article  CAS  Google Scholar 

  • Christensen B T 1996 The Askov long-term experiments on animal manure and mineral fertilizers. In Evaluation of Soil Organic Matter Models. Eds D S Powlson, P Smith and J U Smith. Volume I 38. pp. 301–312. Springer Verlag, Berlin.

    Google Scholar 

  • DIN 19684, part 8, 1977 Chemische Laboruntersuchungen: Bestimmung der Austauschkapazität der Bodens und der austauschbaren Kationen. In Deutsche Normen. Ed. Fachnormenausschuß Wasserwesen (FNW) im DIN Deutsches Institut für Normung e.V. Beuth Verlag Berlin.

  • DIN ISO 10694 1994 Bodenbeschaffenheit: Bestimmung des organischen Kohlenstoffgehaltes und des Gesamtkohlenstoffgehaltes nach trockener Verbrennung (Elementaranalyse). In Deutsche 61 Normen. Ed. Fachnormenausschuß Wasserwesen (FNW) im DIN Deutsches Institut für Normung e.V. Beuth Verlag Berlin.

  • Eich D, Bahn E and Buhtz E 1982 Ertragsentwicklung und Entwicklung der Gehalte an organischer Substanz and Nährstoffen im Statischen Versuch Lauchstädt. In 80 Jahre Statischer Versuch Lauchstädt. Ed. D Eich. pp 37–48. Akademie der Landwirtschaftswissenschaften der DDR.

  • Ellerbrock R, Höhn A and Rogasik J 1997 Influence of Management Practice on Soil Organic Matter Composition. In The Role of Humic Substances in the Ecosystems and in Environmental Protection. Eds J Drozd, S S Gonet, N Senesi and J Weber. pp. 233–238. Proceedings of the 8th meeting of the International Humic Substances Society (IHSS-8), Wroclaw, Poland.

  • Gerzabek M H, Pichlmayer F, Kirchmann H and Habenhauer G 1997 The response of soil organic matter to manure amendment in a long-term experiment at Ultuna, Sweden. Eur. J. Soil Sci. 48, 273–282.

    Article  Google Scholar 

  • Greenwood N N and Earnshaw A 1984 Chemistry of the Elements. Pergamon Press, Oxford.

    Google Scholar 

  • Günzler H and Böck H 1990 IR-Spektroskopie. Verlag Chemie, Weinheim.

    Google Scholar 

  • Guggenberger G, Christensen B T and Zech W 1994 Land-use effects on the composition of organic matter in particle-size separates of soil I. Lignin and carbohydrate signature. Eur. J. Soil Sci. 45, 449–458.

    CAS  Google Scholar 

  • Hayes M H B 1985 Extraction of humic substances from soil. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation and Characterization. Eds G R Aiken, D M McKnight, R L Wershaw and P MacCarthy. pp. 329–362. Wiley Interscience, New York.

    Google Scholar 

  • Hempfling R, Ziegler F, Zech W and Schulten H-R 1987 Litter decomposition and humification in acidic forest soils studied by chemical degradation, IR and NMR spectroscopy and pyrolysis field ionization mass spectroscopy. Zeitschrift für Pflanzenernährung und Bodenkunde 150, 179–186.

    CAS  Google Scholar 

  • Inbar Y, Chen Y and Hadar Y 1989 Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci. Soc. Am. J. 53, 1695–1701.

    Article  CAS  Google Scholar 

  • Jasmund K and Lagaly G 1993 Tonmineral und Tone. Steinkopff Verlag, Darmstadt.

    Google Scholar 

  • Jenkinson D S 1988 Soil organic matter and its dynamics. In Russel's Soil Conditions and Plant Growth. Ed. A Wild. pp. 564–607. Longman Scientific & Technical, London.

    Google Scholar 

  • Jenkinson D S, Bradbury B J and Coleman K 1994 How the Rothamsted classical experiments have been used to develop and test models for the turnover of carbon and nitrogen in soil. In Long-term experiments in agricultural and ecological sciences. Eds R A Leigh and A E Johnston. pp. 217–234. CAB International, Wallingford, UK.

    Google Scholar 

  • Kögel-Knabner I 1993 Biodegradation and humification processes in forest soils. In Soil Biochemistry Volume 8. Eds. J M Bollag and G Stotzky. pp. 101–135. Marcel Dekker, New York.

    Google Scholar 

  • Körschens M, Schulz E and Behm, R 1990 Hot water extractable carbon and nitrogen of soils as a criterion for their ability of Nrelease. Zentralblatt für Mikrobiologie 145, 305–311.

    Google Scholar 

  • Körschens M and Müller A 1996 The static experiment Bad Lauchstädt, Germany. In Evaluation of Soil Organic Matter Models. Eds D S Powlson, P Smith and J U Smith. Volume I 38. pp. 369–376. Springer Verlag, Berlin.

    Google Scholar 

  • Kühn G 1996 Informationen zu Dauerversuchen des Zentrums für Agrarlandschafts-und Landnutzungsforschung e.V. Müncheberg in der Forschungsstation Dedelow. ZALF, Müncheberg.

  • Niemeier J, Chen Y and Bollag J-M 1992 Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-Transform Infrared spectroscopy. Soil Sci. Soc. Am. J. 56, 135–140.

    Article  Google Scholar 

  • Powlson D S 1996 Why evaluating soil organic matter models? In Evaluation of Soil Organic Matter Models. Eds D S Powlson, P Smith and J U Smith. Volume I 38. pp. 3–12. Springer Verlag, Berlin.

    Google Scholar 

  • Rogasik J, Obenauf S, Lüttich M and Ellerbrock R 1997 Faktoreinsatz in der Landwirtschaft-Ein Beitrag zur Resourcenschonung (Daten und Analysen aus dem Müncheberger Nährstoffsteigerungsversuch). Archiv für Acker-, Pflanzenbau und Bodenkunde 42, 247–263.

    CAS  Google Scholar 

  • Stevenson F J 1982 Humus Chemistry, Genesis, Composition, Reactions. Wiley & Sons, New York. pp. 36–42.

    Google Scholar 

  • Stevenson F J 1985 Geochemistry of soil humic substances. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation and Characterization. Eds G R Aiken, D M McKnight, R L Wershaw and P MacCarthy. pp. 13–53. Wiley Interscience, New York.

    Google Scholar 

  • Van der Marel H W and Beutelspacher H 1976 Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam. pp. 305–315.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellerbrock, R.H., Höhn, A. & Gerke, H.H. Characterization of soil organic matter from a sandy soil in relation to management practice using FT-IR spectroscopy. Plant and Soil 213, 55–61 (1999). https://doi.org/10.1023/A:1004511714538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004511714538

Navigation