Skip to main content
Log in

Total Energy of the Bianchi Type I Universes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the symmetric energy-momentum complexes of Landau and Lifshitz,Papapetrou, and Weinberg, we obtain the energy of the universe in anisotropicBianchi type I cosmological models. The energy (due to matter plus field) isfound to be zero and this agrees with a previous result of Banerjee and Sen, whoinvestigated this problem using the Einstein energy-momentum complex. Ourresult supports the importance of the energy-momentum complexes andcontradicts the prevailing folklore that different energy-momentum complexescould give different and hence unacceptable energy distribution in a givenspace-time. The result that the total energy of the universe in these models is zerosupports the viewpoint of Tryon. Rosen computed the total energy of the closedhomogeneous isotropic universe and found it to be zero, which agrees with thestudies of Tryon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aguirregabiria, J. M., Chamorro, A., and Virbhadra, K. S. (1996). General Relativity and Gravitation, 28, 1393.

    Google Scholar 

  • Banerjee, N., and Sen, S. (1997). Pramana·Journal of Physics, 49, 609.

    Google Scholar 

  • Bergqvist, G. (1992). Classical and Quantum Gravity, 9, 1753.

    Google Scholar 

  • Bondi, H. (1990). Proceedings of the Royal Society of London A, 427, 249.

    Google Scholar 

  • Brown, J. D., and York, J. W., Jr. (1993). Physical Review D, 47, 1407.

    Google Scholar 

  • Chamorro, A., and Virbhadra, K. S. (1995). Pramana·Journal of Physics, 45, 181.

    Google Scholar 

  • Chamorro, A., and Virbhadra, K. S. (1996). International Journal of Modern Physics D, 5, 251.

    Google Scholar 

  • Cooperstock, F. I. (1994). General Relativity and Gravitation, 26, 323.

    Google Scholar 

  • Cooperstock, F. I., and Richardson, S. A. (1991). In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, World Scientific, Singapore.

    Google Scholar 

  • Cooperstock, F. I., and Sarracino, R. S. (1978). Journal of Physics A, 11, 877.

    Google Scholar 

  • Johri, V. B., Kalligas, D., Singh, G. P., and Everitt, C. W. F. (1995). General Relativity and Gravitation, 27, 313.

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M. (1987). The Classical Theory of Fields, Pergamon Press, p. 280.

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco, NY, p. 603.

    Google Scholar 

  • Papapetrou, A. (1948). Proceedings of the Royal Irish Academy A, 52, 11.

    Google Scholar 

  • Penrose, R. (1982). Proceedings of the Royal Society of London A, 381, 53.

    Google Scholar 

  • Rosen, N. (1994). General Relativity and Gravitation, 26, 319.

    Google Scholar 

  • Rosen, N. and Virbhadra, K. S. (1993). General Relativity and Gravitation, 25, 429.

    Google Scholar 

  • Seifert, H. J. (1979). General Relativity and Gravitation, 10, 1065.

    Google Scholar 

  • Thorne, K. S. (1972). in MagicWithout Magic, J. R. Klauder, ed., Freeman, San Francisco, p. 231.

    Google Scholar 

  • Tryon, E. P. (1973). Nature, 246, 396.

    Google Scholar 

  • Virbhadra, K. S. (1990a). Physical Review D, 42, 1066.

    Google Scholar 

  • Virbhadra, K. S. (1990b). Physical Review D, 427, 2919.

    Google Scholar 

  • Virbhadra, K. S. (1992). Pramana·Journal of Physics, 38, 31.

    Google Scholar 

  • Virbhadra, K. S. (1995). Pramana·Journal of Physics, 45, 215.

    Google Scholar 

  • Virbhadra, K. S. (1997). International Journal of Modern Physics A, 12, 4831.

    Google Scholar 

  • Virbhadra, K. S. (1999). gr-qc/9809077; Physical Review D, in press.

  • Virbhadra, K. S. and Parikh, J. C. (1993). Physics Letters B, 317, 312.

    Google Scholar 

  • Virbhadra, K. S. and Parikh, J. C. (1994). Physics Letters B, 331, 302; (1994) Erratum, 340, 265.

    Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of General Theory of Relativity, J Wiley, New York, p. 165.

    Google Scholar 

  • Xulu, S. S. (1998a). International Journal of Theoretical Physics, 37, 1773.

    Google Scholar 

  • Xulu, S. S. (1998b). International Journal of Modern Physics D, 7, 773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xulu, S.S. Total Energy of the Bianchi Type I Universes. International Journal of Theoretical Physics 39, 1153–1161 (2000). https://doi.org/10.1023/A:1003670928681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003670928681

Keywords

Navigation