Skip to main content
Log in

The sulfide tolerance of milkfish and tilapia in relation to fish kills in farms and natural waters in the Philippines

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fish kills of milkfish Chanos chanos and tilapia Oreochromis spp. now occur frequently in brackish, marine, and freshwater farms (ponds, pens, and cages) in the Philippines. Aquafarms with high organic load, limited water exchange and circulation, no aeration, and high stocking and feeding rates can become oxygen-depleted and allow sulfide from the sediments to appear in the water column and poison free-swimming fish. The sulfide tolerance of 2–5 g milkfish and 5–8 g O. mossambicus was determined in 25-liter aquaria with flow-through sea water (100 ml min-1) at 26–30 °C and sulfide stock solutions pumped in at 1ml min-1. Total sulfide concentrations in the aquaria were measured by the methylene blue method and used in the regression against the probits of % survival. Four experiments showed that the two species have similar sulfide tolerance. In sea water of pH 8–8.5, about 163 ± 68 μM or 5.2 ± 2.2 mg l-1 total sulfide (mean ± 2 se) or 10 μM or 313 μg l-1 H2S was lethal to 50% of the fish in 4–8 h, and 61 ± 3 μM total sulfide or 4 μM H2S in 24–96 h (to convert all sulfide concentrations: 1 μM = 32 μg l-1). Earthen pond bottoms had 0–382 μM total dissolved sulfide (mean ± sd = 54 ± 79 μM, n = 76); a tenth of the samples had >200 μM. The water column may have such sulfide levels under hypoxic or anoxic conditions. To simulate some of the conditions during fish kills, 5–12 g milkfish were exposed to an abrupt increase in sulfide, alone or in combination with progressive respiratory hypoxia and decreasing pH. The tests were done in the same flow-through set-up but with sulfide pumped in at 25 ml min-1. The lethal concentration for 50% of the fish was 197 μM total sulfide or 12 μM H2S at 2 h, but 28–53 μM sulfide allowed fish to survive 6–10 h. Milkfish in aquaria with no aeration nor flow-through sea water died of respiratory hypoxia in 5–8 h when oxygen dropped from 6 to 1 mg l-1. Under respiratory hypoxia with 30–115 μM sulfide, the fish died in 2.5–4 h. Tests with low pH were done by pumping a weak sulfuric acid solution at 25 ml min-1 into aquaria with flow-through sea water such that the pH dropped from 8 to 4 in 5 h. Under these conditions, milkfish died in 7–9 h when the pH was 3.5. When 30–93 μM sulfide was pumped in with the acid, the fish died in 2–6 h when the pH was still 4.5–6.3. Thus, sulfide, hypoxia, and low pH are each toxic to milkfish at particular levels and aggravate each other's toxicity. Aquafarms must be well oxygenated to prevent sulfide toxicity and fish kills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelman, I. R. & L. L. Smith Jr, 1970. Effect of hydrogen sulfide on northern pike eggs and sac fry. Trans. am. Fish. Soc. 99: 501–509.

    Article  CAS  Google Scholar 

  • Adelman, I. R. & L. L. Smith Jr, 1972. Toxicity of hydrogen sulfide to goldfish (Carassius auratus) as influenced by temperature, oxygen and bioassay techniques. J. Fish Res. Bd Can. 29: 1309–1317.

    CAS  Google Scholar 

  • Almendras, J. M. E., 1987. Acute nitrite toxicity and methemoglobinemia in juvenile milkfish (Chanos chanos Forsskål). Aquaculture 61: 33–40.

    Article  CAS  Google Scholar 

  • APHA, 1980. Standard Methods for the Examination of Water and Wastewater, 15th edn. American Public Health Association, AmericanWaterWorks Association, andWater Pollution Control Federation, Washington, DC, 1134 pp.

    Google Scholar 

  • Bagarinao, T., 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptations of aquatic organisms. Aquat. Toxicol. 24: 21–62.

    Article  CAS  Google Scholar 

  • Bagarinao, T., 1994. Systematics, genetics, distribution and life history ofmilkfish Chanos chanos. Envir. Biol. Fishes 39: 23–41.

    Article  Google Scholar 

  • Bagarinao, T., 1998. Historical and current trends in milkfish farming in the Philippines. In S. S. de Silva (ed.), Tropical Mariculture. Academic Press, London: 381–422.

    Google Scholar 

  • Bagarinao, T. & R. D. Vetter, 1989. Sulfide tolerance and detoxifi-cation in shallow-water marine fishes. Mar. Biol. 103: 251–262.

    Article  Google Scholar 

  • Bagarinao, T. & R. D. Vetter, 1990. Oxidative detoxification of sulfide by the mitochondria of the California killifish (Fundulus parvipinnis) and the speckled sanddab (Citharichthys stigmaeus). J. Comp. Physiol. B 160: 519–527.

    Article  CAS  Google Scholar 

  • Bagarinao, T. & R. D. Vetter, 1992. Sulfide-hemoglobin interactions in the sulfide-tolerant salt marsh resident, California killifish Fundulus parvipinnis. J. Comp. Physiol. B 162: 614–624.

    Article  CAS  Google Scholar 

  • Bagarinao, T. & R. D. Vetter, 1993. Sulphide tolerance and adaptation in the California killifish Fundulus parvipinnis, a saltmarsh resident. J. Fish Biol. 42: 729–748.

    Article  CAS  Google Scholar 

  • Barica, J., 1976. Nutrient dynamics in eutrophic inland waters used for aquaculture. SCS/76/WP/24. South China Sea Fisheries Development and Coordinating Programme, Manila, 29 pp. + appendices.

  • Baticados, M. C. L., R. M. Coloso & R. C. Duremdez, 1986. Studies on the chronic soft-shell syndrome in the tiger prawn, Penaeus monodon Fabricius, from brackishwater ponds. Aquaculture 56: 271–285.

    Article  Google Scholar 

  • Bonn, E. W. & B. J. Follis, 1967. Effects of hydrogen sulfide on channel catfish (Ictalurus punctatus). Trans. am. Fish. Soc. 96: 31–36.

    Article  CAS  Google Scholar 

  • Boyd, C. E., 1990. Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn University, Auburn.

    Google Scholar 

  • Boyd, C. E., J. A. Davis & E. Johnston, 1978. Die-offs of the bluegreen alga, Anabaena variabilis, in fish ponds. Hydrobiologia 61: 129–133.

    Article  Google Scholar 

  • Chiu, Y. N., M. P. Macahilig & M. A. S. Sastrillo, 1986. Preliminary studies of factors affecting the feeding rhythm of milkfish (Chanos chanos Forskal). In J. L. Maclean, L. B. Dizon & L. V. Hosillos (eds), The First Asian Fisheries Forum. Asian Fisheries Society, Manila: 547–550.

    Google Scholar 

  • Cruz, E. R., 1981. Acute toxicity of un-ionized ammonia to milkfish (Chanos chanos) fingerlings. Fish. Res. J. Philipp. 6: 33–38.

    Google Scholar 

  • Erez, J., M. D. Krom & T. Neuwirth, 1990. Daily oxygen variations in marine fish ponds, Eilat, Israel. Aquaculture 84: 289–305.

    Article  Google Scholar 

  • Fast, A. W., K. E. Carpenter, V. J. Estilo & H. J. Gonzales, 1988. Effects of water depth and artificial mixing on dynamics of Philippines brackishwater shrimp ponds. Aquacult. Eng. 7: 349–361.

    Article  Google Scholar 

  • Gaete, V., E. Canelo, N. Lagos & F. Zambrano, 1994. Inhibitory effects of Microcystis aeruginosa toxin on ion pumps of the gill of freshwater fish. Toxicon 32: 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, M. H., K. Ingvorsen & B. B. Jorgensen, 1978. Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol. Oceanogr 23: 68–76.

    Article  CAS  Google Scholar 

  • IFP (Inland Fisheries Project), 1974. Causes of bangus fish kills in ponds at the Brackishwater Aquaculture Center following a heavy rain. IFP Technical Report 5: 21–43. University of the Philippines, Diliman, Quezon City.

    Google Scholar 

  • Krom, M. D., C. B. Porter & H. Gordin, 1985. Causes of fish mortalitites in semi-intensively operated seawater fish ponds in Eilat, Israel. Aquaculture 49: 159–177.

    Article  CAS  Google Scholar 

  • Kumar, V. & D. Mukherjee, 1988. Phenol and sulfide-induced changes in the ovary and liver of sexually maturing common carp, Cyprinus carpio. Aquat. Toxicol. 13: 53–60.

    Article  CAS  Google Scholar 

  • Maeda, H. & A. Kawai, 1988. Hydrogen sulfide production in bottom sediments in the northern and southern Lake Biwa. Nippon Suisan Gakkaishi 54: 1623–1633.

    CAS  Google Scholar 

  • Nickerson, N. H. & F. R. Thibodeau, 1985. Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry 1: 183–192.

    Article  Google Scholar 

  • Ochumba, P. B. O., 1987. Periodic massive fish kills in the Kenyan part of Lake Victoria. Wat. Qual. Bull. 12: 119–l22, l30.

    CAS  Google Scholar 

  • Oseid, D. M. & L. L. Smith Jr, 1972. Swimming endurance and resistance to copper and malathion of bluegills treated by longterm exposure to sublethal levels of hydrogen sulfide. Trans. am. Fish. Soc. 101: 620–625.

    Article  CAS  Google Scholar 

  • Reynolds, F. A. & T. A. Haines, 1980. Effects of chronic exposure to hydrogen sulphide on newly hatched brown trout Salmo trutta L. Envir. Pollut. A 22: 11–17.

    Google Scholar 

  • Rimmer, M. A., 1993. Ectogenic meromixis in brackish water pond in tropical northern Australia. J. appl. Aquacult. 2: 125–130.

    Article  Google Scholar 

  • Santiago, A. E. & R. P. Arcilla, 1993. Tilapia cage culture and dissolved oxygen trends in Sampaloc Lake, the Philippines. Envir. Monit. Assess. 24: 243–255.

    Article  CAS  Google Scholar 

  • Schroeder, K., 1997. Laboratory Investigations on the Energy Metabolism of Milkfish (Chanos chanos Forssål) under Simulated Environmental Conditions. Shaker Verlag, Aachen, 147 pp.

    Google Scholar 

  • Schwartz, M. F. & C. E. Boyd, 1994. Channel catfish pond effluents. Prog. Fish-Cult. 56: 273–281.

    Article  Google Scholar 

  • Simpson, H. J., H. W. Ducklow, B. Deck & H. L. Cook, 1983. Brackishwater aquaculture in pyrite-bearing tropical soils. Aquaculture 34: 333–350.

    Article  Google Scholar 

  • Singh, V. P. & A. T. Poernomo, 1984. Acid sulfate soils and their management for brackishwater fishponds. In J. V. Juario, R. P. Ferraris & L. V. Benitez (eds), Advances in Milkfish Biology and Culture. Island Publishing House, Manila: 121–132.

    Google Scholar 

  • Sly, P. G. (ed.), 1993. Laguna Lake Basin, Philippines: Problems and Opportunities. ERMP Reports 7, 338 pp. Environment and Resource Management Project, Halifax, Nova Scotia and University of the Philippines, Los Bañños.

    Google Scholar 

  • Smith, L. L. Jr & D. M. Oseid, 1974. Effects of hydrogen sulfide on development and survival of eight freshwater fish species. In J. H. S. Blaxter (ed.), Early Life History of Fishes. Springer-Verlag, New York: 417–430.

    Google Scholar 

  • Smith, L. L. Jr, D. M. Oseid & L. E. Olson, 1976a. Acute and chronic toxicity of hydrogen sulfide to the fathead minnow (Pimephales promelas). Envir. Sci. Technol. 10: 565–568.

    Article  CAS  Google Scholar 

  • Smith, L. L. Jr, D. M. Oseid, G. L. Kimball & S. El-Kandelgy, 1976b. Toxicity of hydrogen sulfide to various life history stages of bluegill (Lepomis macrochirus Rafinesque). Trans. am. Fish. Soc. 105: 442–449.

    Article  CAS  Google Scholar 

  • Suplee, M. W. & J. B. Cotner, 1996. Temporal changes in oxygen demand and bacterial sulfate reduction in inland shrimp ponds. Aquaculture 145: 141–158.

    Article  CAS  Google Scholar 

  • Tarazona, J. V., M. J. Muñoz, J. A. Ortiz, M. O. Nuñez & J. A. Camargo, 1987. Fish mortality due to acute ammonia exposure. Aquacult. Fish. Manage. 18: 167–172.

    CAS  Google Scholar 

  • Torrans, E. L. & H. P. Clemens, 1982. Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comp. Biochem. Physiol. C 71: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Villadolid, D., 1933. Some causes of depletion of certain fishery resources of Laguna de Bay. Nat. Appl. Sci. Bull. 3: 251–256.

    Google Scholar 

  • Witters, H. E., 1986. Acute acid exposure of rainbow trout, Salmo gairdneri Richardson: effects of aluminum and calcium on ion balance and haematology. Aquat. Toxicol. 8: 197–210.

    Article  CAS  Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall, New Jersey, 718 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagarinao, T., Lantin-Olaguer, I. The sulfide tolerance of milkfish and tilapia in relation to fish kills in farms and natural waters in the Philippines. Hydrobiologia 382, 137–150 (1998). https://doi.org/10.1023/A:1003420312764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003420312764

Navigation