Abstract
The bioactivities of peptides encrypted in major milk proteins are latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. The proteolytic system of lactic acid bacteria can contribute to the liberation of bioactive peptides. In vitro, the purified cell wall proteinase of Lactococcus lactis was shown to liberate oligopeptides from β- and α-caseins which contain amino acid sequences present in casomorphins, casokinines, and immunopeptides. The further degradation of these peptides by endopeptidases and exopeptidases of lactic acid bacteria could lead to the liberation of bioactive peptides in fermented milk products. However, the sequences of practically all known biologically active peptides can also be cleaved by peptidases from lactic acid bacteria. Activated peptides are potential modulators of various regulatory processes in the body: Opioid peptides are opioid receptor ligands which can modulate ab sorption processes in the intestinal tract, angiotensin-I-converting enzyme (ACE)-inhibitory peptides are hemodynamic regulators and exert an antihypertensive effect, immunomodulating casein peptides stimulate the activities of cells of the immune system, antimicrobial peptides kill sensitive microorganisms, antithrombotic peptides inhibit aggregation of platelets and caseinophosphopeptides may function as carriers for different minerals, especially calcium. Bioactive peptides can interact with target sites at the luminal side of the intestinal tract. Furthermore, they can be absorbed and then reach peripheral organs. Food-derived bioactive peptides are claimed to be health enhancing components which can be used for functional food and pharmaceutical preparations.
Similar content being viewed by others
References
Ariyoshi Y (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4: 139-144
Bellamy W, Takase M, Yamauchi K, Kawase K, Shimamura S & Tomita M (1992) Identification of the bactericidial domain of lactoferrin. Biochim. Biophys. Acta 1121: 130-136
Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S & Tomota M (1993) Role of cell-binding in the antibacterial mechanism of lactoferricin B. J. Appl. Bacteriol. 75: 478-484
Bockelmann W (1995) The proteolytic system of starter and nonstarter bacteria: components and their importance for cheese ripening. Int. Dairy J. 5: 977-994
Bockelmann W, Fobker M. & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy J. 1: 51-66
Bouhallab S, Mollé D & Léonil J (1992) Tryptic hydrolysis of case-inomacropeptide in membrane reactor: preparation of bioactive peptides. Biotechnol. Lett. 14: 805-810
Brandsch M, Brust P, Neubert K & Ermisch A (1994). β-Casomorphins — chemical signals of intestinal transport systems. In: Brantl V & Teschemacher H (Eds) β-Casomorphins and Related Peptides: Recent Developments (pp 207-219). VCH, Weinheim
Brantl V, Teschemacher H, Bläsig J, Henschen A & Lottspeich F (1981) Opioid activities of β-casomorphins. Life Sci. 28: 1903-1909
Bruneval P, Hinglais N & Alhenc-Gelas F (1986) Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 86: 73-80
Chiba H, Tani F & Yoshikawa M (1989) Opioid antagonist peptides derived from κ-casein. J. Dairy Res. 56: 363-366
Chiba H & Yoshikawa M (1986) Biologically functional peptides from food proteins: New opioid peptides from milk proteins. In: Feeney RE & Whitaker JR (Eds) Protein Tailoring for Food and Medical Uses (pp 123-153). Marcel Dekker Inc., New York
Daniel H, Vohwinkel M & Rehner G (1990a) Effect of casein and β-Casomorphins on gastrointestinal motility in rats. J. Nutr. 120: 252-257
Daniel H, Wessendorf A, Vohwinkel M & Brantl V (1990b) Effect of D-Ala2,4Tyr5-β-casomorphin-5-amide on gastrointestinal functions. In: Nyberg F & Brantl V (Eds) β-Casomorphins and Related Peptides (pp 95-104). Fyris-Tryck AB, Uppsala
Dionysius DA & Milne JM (1998) Antibacterial peptides of bovine lactoferrin: purification and characterizaton. J. Dairy Sci. 80: 667-674
Elitsur Y & Luk GD (1991) β-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clin. Experiment. Immunol. 85: 493-497
Fiat AM & Jollès P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. Cell. Biochem. 87: 5-30
FitzGerald RJ (1998) Potential uses of caseinophosphopeptides. Int. Dairy J. 8: 451-457
FitzGerald RJ & Meisel H (1999) Lactokinins: Whey Protein-derived ACE Inhibitory Peptides. Nahrung/Food 431: 165-167
Fukudome S-I & Yoshikawa M (1994) Isolation and characterizaton of opioid peptides derived from wheat gluten. In: V. Brantl & H. Teschemacher (Eds) β-Casomorphins and related peptides: recent developments (pp 27-33). VCH, Weinheim
Hadden JW (1991) Immunotherapy of human immunodeficiency virus infection. Trends Pharmaceutical Sci. 12: 107-111
Hamel U, Kielwein G & Teschemacher H (1985) β-casomorphin immunoreactive materials in cow's milk incubated with various bacterial species. J. Dairy Res. 52: 139-148
Hansen M, Sandstöm B, Jensen M & Sörensen SS (1997) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole grain infant cereal. J. Pediatr. Gastroenterol. Nutr. 24: 56-62
Johnston CI (1992) Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J. Hypertension 10: S13-S26
Jollès P, Lévy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A, Dunn FW & Caen JB (1986) Analogy between fibrinogen and casein. Eur. J. Biochem. 158: 379-384
Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP & Konings WN (1995) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177: 3472-3478
Kasai T, Honda T & Kiriyama S (1992) Caseinophosphopeptides (CPP) in feces of rats fed casein diet. Biosci. Biotechnol. Biochem. 56: 1150-1151
Kayser H & Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEES Lett. 383: 18-20
Kitts DD & Yuan YV (1992) Caseinophosphopeptides and calcium bioavailability. Trends in Food Sci. & Technol. 3: 31-35
Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B. & Driessen AJM (1997) The role of transport processes in survival of lactic acid bacteria. Antonie van Leeuwenhoek 71: 117-128
Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187-221
Lahov E & Regelson W (1996) Antibacterial and immunostimulating casein-derived substances from milk: casesidin isracidin peptides. Fd. Chem. Toxic. 34: 131-145
Law J & Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy J. 7: 1-11
Loukas S, Varoucha D, Zioudrou C, Streaty RA & Klee WA (1983) Opioid activities and structures of α-casein-dervied exorphins. Biochemistry 22: 4567-4573
Maeno M, Yamamoto Y & Takano T (1998) Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79: 1316-1321
McDonagh D & FitzGerald RJ (1998) Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 8: 39-45
Meisel H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett. 196: 223-227
Meisel H (1993) Casokinins as inhibitors of Angiotensin-Converting-Enzyme. In: Sawatzki G & Renner B (Eds) New Perspectives in Infant Nutrition (pp 153-159). Thieme, Stuttgart, New York
Meisel H (1997a) Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmacological applications. Liv. Prod. Sci. 50: 125-138
Meisel H (1997b) Biochemical properties of regulatory peptides derived from milk proteins. Biopoly. 43: 119-128
Meisel H (1998) Overview on milk protein-derived peptides. Int. Dairy J. 8: 363-373
Meisel H & Frister H (1988) Chemical characterization of a case-inophosphopeptide isolated from in vivo digests of a casein diet. Biol. Chem. Hoppe-Seyler 369: 1275-1279
Meisel H & Frister H (1989) Chemical characterization of bioactive peptides from in vivo digests of casein. J. Dairy Res. 56: 343-349
Meisel H & Schlimme E (1994) Inhibitors of Angiotensin-Converting-Enzyme derived from bovine Casein (Casokinins). In: Brantl V & Teschemacher H (Eds) β-Casomorphins and related peptides: recent developments (pp 27-33). VCH, Weinheim
Meisel H & Schlimme E (1996) Bioactive peptides derived from milk proteins: Ingredients for functional foods? Kieler Milchwirtschaftl. Forschungsber. 48: 343-357
Meisel H, Goepfert A & Günther S (1997) Occurence of ACE inhibitory peptides in milk products. Milchwissenschaft 52 307-311
Mierau I, Kunji ERS, Venema G & Kok J (1997) Casein and peptide degradation in lactic acid bacteria. Biotech. Genetic Engineering Rev. 14: 279-301
Migliore-Samour D, Floc'h F & Jollès P. (1989) Biologically active casein peptides implicated in immunomodulation. J. Dairy Res. 56: 357-362
Monnet V, Bockelmann W, Gripon JC & Teuber M (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. II. specificity towards bovine b-casein. Appl. Microbiol. Biotechnol. 31: 112-118
Monnet V, Chapot-Chartier MP & Gripon JC (1993) Lactococcal peptidases. Lait 73: 97-108
Muehlenkamp MR & Warthesen JJ (1996) β-Casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactobacillus lactis ssp. cremoris. J. Dairy Sci. 79: 20-26
Mullally MM Meisel H & FitzGerald RJ (1996) Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity. Biol. Chem. Hoppe-Seyler 377: 259-260
Mullally MM, Meisel H & FitzGerald RJ (1997) Identification of novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of β-lactoglobulin. FEBS Lett. 402: 99-101
Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S & Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from a sour milk. J. Dairy Sci. 78: 777-783
Ondetti MA & Cushman DW (1982) Enzymes of the renin-angiotensin system and their inhibitors. Ann. Rev. Biochem. 51: 283-308
Pelissier JP (1984) Proteolysis of caseins. Sciences des Aliments 4: 1-35
Pihlanto-Leppälä A, Rokka T & Korhonen H (1998) Angiotensin I converting enzyme inhibitory peptides from bovine milk proteins. Int. Dairy J. 8: 325-331
Poolman B, Kunji, ERS, Hagting A, Juillard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Symp. Supp. 79: 65S-75S
Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179-206
Reynolds E (1987) Phosphopeptides. PCT Int. Patent Application WO 87/07615 Al
Reid JR, Coolbear T, Pillidge CJ & Pritchard GG (1994) Specificity of hydrolysis of bovine κ-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 60: 801-806
Reid JR, Moore CH, Midwinter GG & Pritchard GG (1991) Action of cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine α S1-casein. Appl. Microbiol. Biotechnol. 35: 222-227
Sato R, Naguchi T & Naito H (1986) Casein phosphopeptide (CPP) enhance calcium absorption from the ligated segment of rat small intestine. J. Nutri. Sci. Vitaminol. 32: 67-76
Schanbacher FL, Talhouk RS & Murray FA (1997) Biology and origin of bioactive peptides in milk. Liv. Prod. Sci. 50: 105-123
Shimizu M (1999) Modulation of intestinal functions by food substances. Nahrung/Food 143: 154-158
Suetsuna K & Osajima K (1989) Blood pressure reduction and vasodilatory effects in vivo of peptides originating from sardine muscle (in Japan). J. Jp. Soc. Nutr. Food Sci. 42: 47-54
Svedberg J, de Haas J, Leimenstoll G, Paul F & Teschemacher H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6: 825-830
Teschemacher H & Brantl V (1994) Milk protein derived atypical opioid peptides and related compounds with opioid antagonist activity. In: Brantl V & Teschemacher H (Eds) β-Casomorphins and Related Peptides: Recent Developments (pp 3-17). VCH, Weinheim
Teschemacher H, Umbach M, Hamel U, Praetorius K, Ahnert-Hilger G, Brantl V, Lottspeich F & Henschen A (1986) No evidence for the presence of β-casomorphins in human plasma after ingestion of cows' milk or milk products. J. Dairy Res. 53: 135-138
Teschemacher H, Koch G & Brantl V (1997) Milk protein-derived opioid receptor ligands. Biopoly. 43: 99-117
Tomé D, Dumontier AM, Hautefeuille M & Desjeux JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am. J. Physiol. 253: G737-G744
Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H & Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74: 4137-4142
Tomita M, Takase M, Bellamy W & Shimamura S (1994) A review: the active peptide of lactoferrin. Acta Pediatr. Jpn. 36: 585-591
Umbach M, Teschemacher H, Praetorius K, Hirschhäuser R & Bostedt H (1985) Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12: 223-230
Visser S, Slangen J, Exterkate FA & de Veer GJCM (1988) Action of a cell wall proteinase (PI) from streptococcus cremoris HP on bovine β-casein. Appl. Microbiol. Biotechnol. 29: 61-66
Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopoly. 43: 129-134
Yamamoto N, Akino A & Takano T (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77: 917-922
Yoshikawa M, Tani F & Chiba H (1988) Structure-activity relationship of opioid antagonist peptides derived from milk proteins. In: Shiba T (Ed) Peptide Chemistry (pp 473-476). Protein Research Foundation, Osaka
Zucht HD, Raida M, Andermann K, Mägert H-J & Forssman WG (1995) Casocidin-I: a casein-α S2 derived peptide exhibits antibacterial activity. FEBS Lett. 372 185-188
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Meisel, H., Bockelmann, W. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 76, 207–215 (1999). https://doi.org/10.1023/A:1002063805780
Issue Date:
DOI: https://doi.org/10.1023/A:1002063805780