Skip to main content
Log in

Thermal Injury Induces the Development of Inflammatory Macrophages from Nonadherent Bone Marrow Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The normal course of hematopoiesis is controlled by growth factors and cytokines and, therefore, should be susceptible to alterations induced by systemic mediator release such as that seen following thermal injury. We hypothesized that a brief exposure of developing macrophages to the postthermal injury state would result in functionally altered progeny. We measured the production of inflammatory mediators by rat, bone-marrow macrophage precursors harvested 24 h following a 30% TBSA burn after subsequent maturation in a controlled, in vitro environment. Interleukin (IL)-6, tumor necrosis factor (TNF), and prostaglandin (PG) E2 levels in response to 24 h stimulation with lipopolysaccharide (LPS) were measured following 4 or 8 days of incubation with IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), or both. Flow cytometric analysis showed that bone marrow cells harvested from burn and sham animals cultured in GM-CSF developed principally into macrophages (His48, R21A6A+, CD11b+. Unstimulated cells produced negligent levels of cytokines and PGE2. Stimulated burn-derived cells released greater amounts of IL-6 and TNF at 4 or 8 days of culture depending on the conditions. Elevated PGE2 release was noted in all GM-CSF containing cultures, with burn-derived cells showing a trend towards reduced prostaglandin release. Detection of mRNA for cytokines after LPS stimulation showed no change in IL-6 or TNF transcripts. A short exposure to the systemic effects of thermal injury preprogramed macrophage progenitor cells with the propensity to develop into inflammatory macrophages, secreting higher levels of TNF and IL-6. This shift towards proinflammatory functions in these cells suggests they could be a source of enhanced inflammatory mediator release at 4 or more days post thermal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. OGLE, C. K., X. GUO, K. SZCZUR, S. HARTMEN, and J. D. OGLE. 1994. Production of tumor necrosis factor, interleukin-6 and prostaglandin E2 by LPS-stimulated rat bone marrow macrophages after thermal injury: Effect of indomethacin. Inflammation 18:175–185.

    Google Scholar 

  2. WU, J., C. K. OGLE, J. MAO, K. SZCZUR, J. E. FISCHER, and J. D. OGLE. 1995. The increased potential for the production of inflammatory cytokines by kupffer cells and splenic macrophages eight days after thermal injury. Inflammation 19:529–541.

    Google Scholar 

  3. NATHAN, C. 1987. Secretory products of macrophages. J. Clin. Invest. 79:319–326.

    Google Scholar 

  4. FALK, L. A., and S. N. VOGEL. 1988. Comparison of bonemarrow progenitors response to granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor. J. Leukoc. Biol. 43:148–157.

    Google Scholar 

  5. FALK, L. A., M. M. HOGAN, and S. N. VOGEL. 1988. Bone marrow progenitors cultured in the presence of granulocyte-macrophage colony-stimulating factor versus colony-stimulating factor differentiate into macrophages with distinct tumoricidal capacities. J. Leukoc. Biol. 43:471–476.

    Google Scholar 

  6. YAMAMOTO, Y., T. W. KLEIN, M. TOMIOKA, and H. FRIEDMAN. 1997. Differential effects of granulocyte/macrophage colony-stimulating factor (GM-CSF) in enhancing macrophage resistance to Legionella pneumophilia vs Candida albicans. Cell. Immunol. 176:75–81.

    Google Scholar 

  7. KELLER, J. R., and J. N. IHLE. 1989. Unique pathway of IL-3-driven hemopoietic differentiation. J. Immunol. 143:4025–4033.

    Google Scholar 

  8. RUTERFORD, M. S., and L. B. SCHOOK. 1992. Differential immunocompetence of macrophages derived using macrophage or granulocyte-macrophage colony-stimulating factor. J. Leukoc. Biol. 51:69–76.

    Google Scholar 

  9. DEXTER, T. M., and E. SPOONCER. 1987. Growth and differentiation in the hematopoietic system. Annu. Rev. Cell Biol. 3:423–444.

    Google Scholar 

  10. IHLE, J. N. 1989. The molecular and cellular biology of interleukin-3. In The Year in Immunology. Immunoregulatory Cytokines and Cell Growth. J. M. Cruse and R. E. Lewis, Jr., editors. Karger, Basel. 59.

    Google Scholar 

  11. MC NIECE, I. K., F. M. STEWART, D. M. DEACON, and P. J. QUESENBERRY. 1988. Synergistic interactions between hematopoietic growth factors as detected by in vitro mouse bone marrow colony formation. Exp. Hematol. 16:383–388.

    Google Scholar 

  12. METCALF, D., S. MERCHAV, and G. WAGEMAKER. 1982. Commitment by GM-CSF or M-CSF of biopotential GM progenitor cells to granulocyte or macrophage formation. In Experiments in Hematology Today. S. J. Baum, G. D. Ledney, and S. Thierfeldman, editors. S. Karger, Basel. 3–9.

    Google Scholar 

  13. CAUX, C., S. SAELAND, C. FAVRE, V. DUVERT, P. MANNONI, and J. BANCHEREAU. 1990. Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte-macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells. Blood 75:2292–2298.

    Google Scholar 

  14. ARIYAMA, Y., S. MISAWA, and Y. SONODA. 1995. Synergistic effects of stem cell factor and interleukin 6 or interleukin 11 on the expansion of murine hematopoietic progenitors in liquid suspension culture. Stem Cells 13:404–413.

    Google Scholar 

  15. STRUZYNA, J., Z. POIDA, B. BRAUN, M. CHOMICKA, E. SOBICZEWSKA, and J. WREMBEL. 1995. Serum cytokine levels (IL-4, IL-6, IL-8, G-CSF, GM-CSF) in burned patients. Burns 21:437–440.

    Google Scholar 

  16. FUKUSHIMA, R., J. W. ALEXANDER, J. Z. WU, J. X. MAO, K. SZCZUR, A. M. STEPHENS, J.D. OGLE, and C. K. OGLE. 1994. Time course of production of cytokines and prostaglandin E2 by macrophages isolated after thermal injury and bacterial translocation. Circ. Shock, 42:154–162.

    Google Scholar 

  17. WU, J., C. K. OGLE, J. E. FISCHER, G. D. WARDEN, and J. D. OGLE. 1995. The mRNA expression and in vitro production of cytokines and other proteins by hepatocytes and Kupffer cells following thermal injury. Shock 3:268–273.

    Google Scholar 

  18. RUFF, M. R., and G. GIFFORD. 1981. Tumor necrosis factor. In Lymphokines, Vol. 2. E. Pick, editor. Academic Press, New York. 235–273.

    Google Scholar 

  19. VANSNICK, J., S. A. CAYPHAS, and A. VINK. 1989. Purification of NH2 terminal amino acid sequence of a T-cell derived lymphokine with growth factor activity for b cell hybridoma. Proc. Natl. Acad. Sci. U.S.A. 3:9679–9683.

    Google Scholar 

  20. SAMBROOK, J., and E. F. FRITSCH. 1989. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press.

  21. MARTIN, R., C. HOOVER, S. GRIMME, C. GROGAN, J. HOLTKE, and C. KESSLER. 1990. A highly sensitive, nonradioactive DNA labeling and detection system. Biotechniques 9:762–768.

    Google Scholar 

  22. SCHLUTER, B., B. KONIG, U. BERGMAN, F. E. MULLER, and W. KONIG. 1991. Interleukin 6—A potential mediator of lethal sepsis after major thermal trauma: Evidence for increased IL-6 production by peripheral blood mononuclear cells. J. Trauma 31:1663–1669.

    Google Scholar 

  23. CANNON, J. G., J. S. FRIEDBERG, J. A. GELFAND, R. G. TOMPKINS, J. F. BURKE, and C. A. DINARELLO. 1992. Circulating interleukin-1β and tumor necrosis factor-α concentrations after burn injury in humans. Critical Care Medicine 20:1414–1419.

    Google Scholar 

  24. MARANO, M. A., Y. FONG, L. L. MOLDAWER, H. WEI, S. E. CALVANO, K. J. TRACER, P. S. BARIE, K. MANOGUE, A. CERAMI, G. T. SHIRES, and S. F. LOWRY. 1990. Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg. Gynecol. and Obstetrics 70:32–38.

    Google Scholar 

  25. UEYAMA, M., I. MARUYAMA, M. OSAME, and Y. SAWADA. 1992. Marked increase in plasma interleukin-6 in burn patients. J. Lab. Clin. Med. 120:693–698.

    Google Scholar 

  26. IKEJIMA, T., S. OKUSAWA, J. W. M.VAN DER MEER, and C. A. DINARELLO. 1988. Induction by toxic-shock-syndrome toxin-1 of a circulating tumor necrosis factor-like substance from human mononuclear cells. J. Infect. Dis. 158:1017–1025.

    Google Scholar 

  27. RUTHERFORD, M. S., and L. B. SCHOOK. 1992. Differential immunocompetence of macrophages derived using macrophage or granulocyte-macrophage colony-stimulating factor. J. Leukoc. Biol. 51:69–76.

    Google Scholar 

  28. CLARK, S. C., and R. KAMEN. 1987. The human hematopoietic colony-stimulating factors. Science 236:1229–1237.

    Google Scholar 

  29. IKEBUCHI, K., G. G. WONG, S. C. CLARK, J. N. IHLE, Y. HIRAI, and M. OGAWA. 1987. Interleukin-6 enhancement of interleukin-3-dependent proliferation of multipotent hemopoietic progenitors. Proc. Natl. Acad. Sci. U.S.A. 84:9035–9039.

    Google Scholar 

  30. ARAI, K., F. LEE, F. MIYAJAMA, S. MIYATAKE, N. ARAI, and T. YAKOTA. 1990. Cytokines: Coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59:783–836.

    Google Scholar 

  31. BROWN, C. Y., C. A. LAGNADO, M. A. VADAS, and G. J. GOODALL. 1996. Differential regulation of the stability of cytokine nRNAs in lipopolysaccharide-activated blood monocytes in response to IL-10. J. Biol. Chem. 271:20108–20112.

    Google Scholar 

  32. STERNFELD, D. C., C. K. OGLE, J. F. VALENTE, J. G. NOEL, and G. D. WARDEN. 1997. Thermal injury functionally alters bone marrow derived macrophages: A study of monocyte-hepatocyte interactions. J. Burn Care 18:(In press).

  33. SNOECK, H. W., S. WEEKX, A. MOULIJN, F. LARDON, M. LENJOU, G. NYS, P. C. F. VAN RANST, D. R. VAN BOCKSTAELE, and Z. N. BERNEMAN. 1996. Tumor necrosis factor α is a potent synergistic factor for the proliferation of primitive human hematopoietic progenitor cells and induces resistance to transforming growth factor β but not to interferon γ. J. Exp. Med. 183:705–710.

    Google Scholar 

  34. JACOBSEN, S. E. W., F. W. RUSCETTI, A. B. ROBERTS, and J. R. KELLER. 1993. TGF-β is a bidirectional modulator of cytokine receptor expression on murine bone marrow cells. J. Immunol. 151:4534–4544.

    Google Scholar 

  35. KOBAYASHI, M., M. IMAMURA, Y. GOTOHDA, S. MAEDA, H. IWASSAKI, K. SAKURADA, M. KASAI, A. J. HAPEL, and T. MIYAZAKI. 1991. Synergistic effects of interleukin-1β and interleukin-3 on the expansion of human hematopoietic progenitor cells in liquid cultures. Blood 78:1947–1953.

    Google Scholar 

  36. STROBL, H., E. RIEDL, C. SCHEINECKER, C. BELLO-FERNANDEZ, W. F. PICKL, K. RAPPERSBERGER, O. MAJDIC, and W. KNAPP. 1996. TGF-β1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J. Immunol. 157:1499–1507.

    Google Scholar 

  37. MUENCH, M. O., J. G. SCHNEIDER, and M. A. S. MOORE. 1992. Interactions among colony-stimulating factors, IL-lβ IL-6, and Kit-ligand in the regulation of primitive murine hematopoietic cells. Exp. Hematol. 20:339–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogle, C.K., Valente, J.F., Guo, X. et al. Thermal Injury Induces the Development of Inflammatory Macrophages from Nonadherent Bone Marrow Cells. Inflammation 21, 569–582 (1997). https://doi.org/10.1023/A:1027377904641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027377904641

Keywords

Navigation