Skip to main content
Log in

The evolution of vegetative desiccation tolerance in land plants

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aalen, R. B., Opsahl-Ferstad, H. G., Linnestad, C. & Olsen, O. A. 1994. Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and in the embryo of developing barley (Hordeum vulgare L.). Plant J. 5: 385–396.

    Google Scholar 

  • Amuti, K. S. & Pollard, C. J. 1977. Soluble carbohydrates of dry and developing seeds. Phytochemistry 16: 529–532.

    Google Scholar 

  • Baker, J., Steele, C. & Dure, L. III. 1988. Sequence and characterization of 6 LEA proteins and their genes from cotton. Planta 175: 485–492.

    Google Scholar 

  • Bartels, D., Alexander, R., Schneider, K., Elster, R., Velasco, R., Alamillo, J., Bianchi, G., Nelson, D. & Salamini, F. 1993. Desiccation-related gene products analyzed in a resurrection plant and in barley embryos. Pp. 119–127. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville Maryland

  • Bartels, D., Hanke, C., Schneider, K., Michel, D. & Salamini, F. 1992. A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J. 11: 2771–2778.

    Google Scholar 

  • Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. & Salamini, F. 1990. Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34.

    Google Scholar 

  • Bartels, D., Singh, M. & Salamini, F. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485–492.

    Google Scholar 

  • Barthlott, W., Gröger, A. & Porembski, S. 1993. Some remarks on the vegetation of tropical inselbergs, diversity and ecological differentiation. Biogeographia 69: 105–124.

    Google Scholar 

  • Beckett, R. P. 1995 Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann. Bot. 76: 211–217.

    Google Scholar 

  • Bewley, J. D. 1979. Physiological aspects of desiccation tolerance. Ann. Rev. Plant Physiol. 30: 195–238.

    Google Scholar 

  • Bewley, J. D., Halmer, P., Krochko, J. E. & Winner, W. E. 1978. Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. Pp. 185–203. In: Crowe, J. H. & Clegg, J. S. (eds), Dry biological systems. Academic Press, New York.

    Google Scholar 

  • Bewley, J. D. & Krochko, J. E. 1982. Desiccation tolerance. Pp. 325–378. In: Lange, O. L., Nobel, P. S., Osmond, C. B., & Ziegler, H. (eds), Encyclopedia of plant physiology. Vol 12B, Physiological Ecology II. Springer-Verlag, Berlin.

    Google Scholar 

  • Bewley, J. D. & Oliver, M. J. 1992. Desiccation tolerance in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. Pp. 141–160. In: Osmond, C. B. & Somero, G. (eds), Water and life: A comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer-Verlag, Berlin.

    Google Scholar 

  • Bewley, J. D., Reynolds, T. L. & Oliver, M. J. 1993. Evolving strategies in the adaptation to desiccation. Pp. 193–201. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.

  • Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F. & Bartels, D. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant 87: 223–226.

    Google Scholar 

  • Bianchi, G., Gamba, A., Murelli, C., Salamini, F. & Bartels, D. 1992. Low molecular weight solutes in desiccated and ABAtreated calli of Craterostigma plantagineum. Phytochemistry 31: 1917–1922.

    Google Scholar 

  • Bianchi, G., Gamba, A., Murelli, C., Salamini, F. & Bartels, D. 1991a. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1: 355–359.

    Google Scholar 

  • Bianchi, G., Murelli, C., Bochicchio, A. & Vazzana, C. 1991b. Changes in low-molecular weight substances in Boea hygroscopica in response to desiccation and rehydration. Phytochemistry 30: 461–466.

    Google Scholar 

  • Blackman, S. A., Obendorf, R. L. & Leopold, A. C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. J. Plant Physiol. 100: 225–230.

    Google Scholar 

  • Blomstedt, C. K., Neale, A. D., Gianello, R. D., Hamill, J. D. & Gaff, D. F. 1998. Isolation and characterization of cDNAs associated with the onset of desiccation tolerance in the resurrection grass, Sporobolus stapfianus. Plant Growth Reg. 24: 219–228.

    Google Scholar 

  • Bochicchio, A., Vazzana, C., Velasco, R., Singh, M. & Bartels, D. 1991. Exogenous ABA induces desiccation tolerance and leads to the synthesis of specific gene transcripts in immature embryos of maize. Maydica 36: 11–16.

    Google Scholar 

  • Bockel, C., Salamini, F. & Bartels, D. 1998. Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J. Plant Physiol. 152: 158–166.

    Google Scholar 

  • Bopp, M. & Werner, O. 1993. Abscisic acid and desiccation tolerance in mosses. Bot. Acta 106: 103–106.

    Google Scholar 

  • Bray, E. A. 1993. Molecular responses to water deficit. J. Plant Physiol. 103: 1035–1040.

    Google Scholar 

  • Burke, M. J. 1986. The glassy state and survival of anhydrous biological systems. Pp. 358–363. In: Leopold, A. C. (ed), Membranes, metabolism and dry organisms. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Chandler, P. M., Munns, R. & Robertson, M. 1993. Regulation of dehydrin expression. Pp. 159–166. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current topics in plant physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.

  • Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K. Kim, K., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, J. G. H., Graham, S. W., Barrett, S. C. H., Dayanandan S. & Albert, V. A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.

    Google Scholar 

  • Chen, Y. & Burris, J. S. 1990. Role of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Crop Sci. 30: 971–975.

    Google Scholar 

  • Close, T. J., Fenton, R. D., Yang, A., Asghar, R., DeMason, D. A., Crone, D. E., Meyer, N. C. & Moonan, F. 1993. Dehydrin: The protein. Pp. 104–118. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.

  • Close, T. J., Kortt, A. A. & Chandler, P. M. 1989. A cDNAbased comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13: 95–108.

    Google Scholar 

  • Crane, P. R. 1990. The phylogenetic context of microsporogenesis. Pp. 11–41 In: Blackmore, S. & Knox, R. B. (eds), Microspores: evolution and ontogeny. Academic Press, London.

    Google Scholar 

  • Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolph, A. S., Aurell-Winstrom, C., Spargo, B. J. & Anchordoguy, T. J. 1988. Interactions of sugars and membranes. Biochim. Biophys. Acta 947: 367–384.

    Google Scholar 

  • Crowe, J. H., Hoekstra, F. A. & Crowe, L. M. 1992. Anhydrobiosis. Ann. Rev. Physiol. 54: 579–599.

    Google Scholar 

  • Csintalan, Zs., Takács, Z., Proctor, M. C. F., Lichtenthaler, H. K. & Tuba, Z. 1998. Desiccation and rehydration responses of desiccation tolerant moss and lichen species from a temperate semidesert grassland. J. Hatt. Bot. Lab. 84: 71–80.

    Google Scholar 

  • Donoghue, M. J. 1994. Progress and prospects in reconstructing plant phylogeny. Ann. Missouri Bot. Garden 81: 405–418.

    Google Scholar 

  • Drennan, P. M., Smith, M. T., Goldsworthy, D. & van Staden, J. 1993. The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J. Plant Physiol. 142: 493–496.

    Google Scholar 

  • Dure, L. III. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363–369.

    Google Scholar 

  • Dure, L. III, Crouch, M., Harada, J., Ho, T-H. D., Mundy, J., Quatrano, R., Thomas, T. & Sung, Z. R. 1989. Common amino sequence domains among LEA proteins of higher plants. Plant Mol. Biol. 12: 475–486.

    Google Scholar 

  • Frank, W., Phillips, J., Salamini, F. & Bartels, D. 1998. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomainleucine zipper proteins. The Plant J. 15: 413–421.

    Google Scholar 

  • Furini, A., Koncz, C., Salamini, F. & Bartels, D. 1997. High level transcription of a member of a repeated gene family con98 fers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J. 16: 3599–3608.

    Google Scholar 

  • Gaff, D. F. 1977. Desiccation-tolerant vascular plants of Southern Africa. Oecologia 31: 95–109.

    Google Scholar 

  • Gaff, D. 1989. Responses of desiccation-tolerant 'resurrection' plants to water stress. Pp. 255–268. In: Krebb, K. H., Richter, H., Hinkley, T. M. (eds), Structural and functional responses to environmental stresses. SPB Academic Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Gaff, D. & Ellis, R.P. 1974. South African grasses with foliage that revives after dehydration. Bothalia 11: 305–308.

    Google Scholar 

  • Gaff, D. & Loveys, B. R. 1994. Abscisic acid levels in drying plants of a resurrection grass. Trans. Malaysian Soc. Plant Physiol. 3: 286–287.

    Google Scholar 

  • Gaff, D., Bartels, S-Y. & O'Brien, T. P. 1976 The fine structure of dehydrated and reviving leaves of Borya nitida Labill. A desiccation-tolerant plant. Aust. J. Bot. 24: 225–236

    Google Scholar 

  • Gaff, D., Zee, D., Gaff, J. & Schneider, K. 1993 Gene expression at low RWC in two hardy tropical grasses. Trans. Malaysian Soc. Plant Physiol. 3: 238–240.

    Google Scholar 

  • Galau, G. A. & Hughes, D. W. 1987. Coordinate accumulation of homologous transcripts of seven cotton lea gene families during embryogenesis and germination. Devel. Biol. 123: 213–221.

    Google Scholar 

  • Galau, G. A., Bijaisoradat, N. & Hughes, D.W. 1987. Accumulation kinetics of cotton late embryogenesis-abundant mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Devel. Biol. 123: 198–212.

    Google Scholar 

  • Galau, G. A., Jakobsen, K. S. & Hughes, D. W. 1991. The controls of late dicot embryogenesis and early germination. Plant Physiol. 81: 280–288.

    Google Scholar 

  • Goldmark, P. J., Curry, J., Morris, C. F. & Walker-Simmons, M. K. 1992. Cloning and expression of an embryo-specific mRNA upregulated in hydrated dormant seeds. Plant Mol. Biol. 19: 433–441.

    Google Scholar 

  • Hallam, N. D. & Luff, S. E. 1980. Fine structural changes in the mesophyll tissue of the leaves of Xerophyta villosa during desiccation. Bot. Gaz. 141: 173–179.

    Google Scholar 

  • Hambler, D. J. 1961. A poikilohydrous, poikilochlorophyllous angiosperm from Africa. Nature 191: 1415–1416.

    Google Scholar 

  • Harlan, H. V. & Pope, M. N. 1992. The germination of barley seeds harvested at different stages of growth. J. Heredity 13: 72–75.

    Google Scholar 

  • Haslekas, C., Stacy, R. A. P., Nygaard, V., CulianezMacia, F. A. & Aalen, R. B. 1998. The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed specific and related to dormancy. Plant Mol. Biol. 36: 833–845.

    Google Scholar 

  • Hetherington, S. E. & Smillie, R. M. 1982 Humidity-sensitive degreening and regreening of leaves of Borya nitida Labill. as followed by changes in chlorophyll fluorescence. Aust. J. Plant Physiol. 9: 587–599.

    Google Scholar 

  • Ibisch, P. L., Rauer, G., Rudolph, D. & Barthlott, W. 1995. Floristic, biogeographical, and vegetational aspects of Pre-Cambrian rock outcrops (inselbergs) in eastern Bolivia. Flora 190: 299–314.

    Google Scholar 

  • Ingram, J. & Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.

    Google Scholar 

  • Ishitani, M, Xiong, l, Stevenson, B. & Zhu, J. K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. Plant Cell 9: 1935–49.

    Google Scholar 

  • Janick, J., Kim, Y. H., Kitto, S. & Saranga, Y. 1993. Desiccated synthetic seed. Pp. 11–23. In: Redenbaugh, K. (ed.), Synseeds: Application of synthetic seeds to crop improvement. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Judd, W. S., Campbell, C. S., Kellogg, E. A. & Stevens, P. F. 1999. Plant sytematics: a phylogenetic approach. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Kaiser, K., Gaff, D. & Outlaw, W. J., Jr. 1985. Sugar contents of leaves of desiccation sensitive and desiccation-tolerant plants. Naturwissenschaften 72: 608–609.

    Google Scholar 

  • Kenrick, P. & Crane, P. R. 1997. The origin and early diversification of land plants: A cladistic study. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Kermode, A. R. & Bewley, J. D. 1985. The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccation tolerance and germinability during development of Ricinus communis L. seeds. J. Exp. Bot. 36: 1906–1915.

    Google Scholar 

  • Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G. & Cuming, A. C. 1995. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7: 499–506.

    Google Scholar 

  • Koster, K. L. & Leopold, A. C. 1988. Sugars and desiccation tolerance in seeds. J. Plant Physiol. 88: 829–832.

    Google Scholar 

  • Kuang, J., Gaff, D. F., Gianello, R. D., Blomstedt, C. K., Neale, A. D. & Hamill, J. D. 1995. Changes in in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust. J. Plant Physiol. 22: 1027–1034.

    Google Scholar 

  • Lane, B. G. 1991 Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J. 5: 2893–2901

    Google Scholar 

  • Lange, O. L., Schulze, E-D. & Koch, W. 1970. Experimentellökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Krusten-und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159: 539–572.

    Google Scholar 

  • Leopold, A. C., Bruni, F. & Williams, R. J. 1992. Water in dry organisms. Pp. 161–169. In: Somero, G. N., Osmond, C. B. & Bolis, C. L. (eds), Water and life. Comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer-Verlag, Berlin.

    Google Scholar 

  • LePrince, O., Bronchart, R. & Deltour, R. 1990. Changes in starch and soluble sugars in relation to acquisition of desiccation tolerance during maturation of Brassica campestris seed. Plant Cell Environ. 13: 339–346.

    Google Scholar 

  • LePrince, O., Hendry, G. A. F. & McKersie, B. D. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231–246.

    Google Scholar 

  • Mishler, B. D. & Churchill, S. P. 1985. Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305–328.

    Google Scholar 

  • Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., & Chapman, R. L. 1994. Phylogenetic relationships of the 'green algae' and 'bryophytes'. Ann. Missouri Bot. Gard. 81: 451–483.

    Google Scholar 

  • Moore, C. J., Luft, S. E. & Hallum, N. D. 1982. Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata and Triquetrella papillata (Mook. F. & Wils.) Broth., during desiccation and rehydration. Bot. Gaz. 143: 358–367.

    Google Scholar 

  • Muller, J., Sprender, N., Bortlik, K., Boller, T. & Wiemken, A. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol. Plant. 100: 153–158

    Google Scholar 

  • Muslin, E. H. & Homann, P. H. 1992. Light as a hazard for the desiccation-resistant 'resurrection' fern Polypodium polypodioides L. Plant Cell Environ. 15: 81–89.

    Google Scholar 

  • Noailles, M. C. 1978. Etude ultrastructurale de la recuperation hydrique apres une periode de secheresse chez une Hypnobryale: Pleurozium schreberi (Willd.) Mitt. Ann. Sci. Nat. Bot. 19: 249–265.

    Google Scholar 

  • O'Mahony, P. & Oliver, M. J. 1998. Characterization of a desiccation responsive small GTP-binding protein (Rab2) from the desiccation tolerant grass Sporobolus stapfianus. Plant Mol. Biol. 39: 809–821.

    Google Scholar 

  • Oliver, M. J. 1991. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: Ramifications for a repair-based mechanism of desiccation tolerance. J. Plant Physiol. 97: 1501–1511.

    Google Scholar 

  • Oliver, M. J. 1996. Desiccation tolerance in plant cells. A mini review. Physiol. Plant. 97: 779–787.

    Google Scholar 

  • Oliver, M. J. & Bewley, J. D. 1984a. Desiccation and ultrastructure in bryophytes. Adv. Bryol. 2: 91–131.

    Google Scholar 

  • Oliver, M. J. & Bewley, J. D. 1984b. Plant desiccation and protein synthesis: VI. Changes in protein synthesis elicited by desiccation of the moss Tortula ruralis are effected at the translational level. J. Plant Physiol. 74: 923–927.

    Google Scholar 

  • Oliver, M. J. & Bewley, J. D. 1997. Desiccation tolerance of plant tissues: A mechanistic overview. Hort. Rev. 18: 171–214.

    Google Scholar 

  • Oliver, M. J. & Wood, A. J. 1997. Desiccation tolerance in mosses. Pp. 1–26. In: Koval, T. M. (ed.) Stress induced processes in higher eukaryotic cells. Plenum Press, New York.

    Google Scholar 

  • Oliver, M. J., Wood, A. J. & O'Mahony, P. 1997. How some plants recover from vegetative desiccation: a repair based strategy. Acta Physiol. Plant. 19: 419–425.

    Google Scholar 

  • Piatkowski, D., Schneider, K., Salamini, F. & Bartels, D. 1990. Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. J. Plant Physiol. 94: 1682–1688.

    Google Scholar 

  • Platt, K. A., Oliver, M. J. & Thomson, W. W. 1994. Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence. Protoplasma 178: 57–65.

    Google Scholar 

  • Proctor, M. C. F., Nagy, Z., Csintalan, Zs. & Takács, Z. 1998.Watercontent components in bryophytes: analysis of pressure-volume relationships. J. Exp. Bot. 49: 1845–1854.

    Google Scholar 

  • Reynolds, T. L. 1992. Strategies for survival in the desiccationtolerant fern Polypodium virginianum. PhD Thesis, University Guelph, Canada.

    Google Scholar 

  • Reynolds, T. L. & Bewley, J. D. 1993a. Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J. Exp. Bot. 44: 921–928.

    Google Scholar 

  • Reynolds, T. L. & Bewley, J. D. 1993b. Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J. Exp. Bot. 44: 1771–1779.

    Google Scholar 

  • Roberts, J. K., DeSimone, N. A., Lingle, W. L. & Dure, L. III. 1993. Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. The Plant Cell 5: 769–780.

    Google Scholar 

  • Schonbeck, M. W. & Bewley, J. D. 1981a. Responses of the moss Tortula ruralis to desiccation treatments. I. Effects of minimum water content and rates of dehydration and rehydration. Can. J. Bot. 59: 2698–2706.

    Google Scholar 

  • Schonbeck, M. W. & Bewley, J. D. 1981b. Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can. J. Bot. 59: 2707–2712.

    Google Scholar 

  • Schwab, K. B., Schreiber, U. & Heber, U. 1989. Response of photoshynthesis and respiration of resurrection plants to desiccation and rehydration. Planta 177: 217–227.

    Google Scholar 

  • Scott, H. B. II & Oliver, M. J. 1994. Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J. Exp. Bot. 45: 577–583.

    Google Scholar 

  • Senaratna, T., McKersie, B. D. & Bowley, S. R. 1990. Artificial seeds of alfalfa. Indication of desiccation tolerance in somatic embryos. In Vitro Cell Dev. Biol. 26: 85–90.

    Google Scholar 

  • Sherwin, H. W. & Farrant, J. M. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.

    Google Scholar 

  • Sherwin, H. W. & Farrant, J. M. 1998. Protection mechanism against excess light in the resurrection plants Craterosigma wilmsii and Xerophyta viscosa. Plant Growth Reg. 24: 203–210.

    Google Scholar 

  • Skriver, K. & Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.

    Google Scholar 

  • Smirnoff, N. 1992. The carbohydrates of bryophytes in relation to desiccation tolerance. J. Bryol. 17: 185–191.

    Google Scholar 

  • Smirnoff, N. 1993. Role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Google Scholar 

  • Strauss, G. & Hauser, H. 1986. Stabilization of small uni-lamellar phospholipid vesicles by sucrose during freezing and dehydration. Pp. 318–326. In: Leopold, A. C. (ed.), Membranes, metabolism and dry organisms. Cornell University Press. Ithaca, New York.

    Google Scholar 

  • Tuba, Z., Lichtenthaler, H. K., Csintalan, Z. & T. Pó cs. 1993a. Regreening of desiccated leaves of the poikilochlorophyllous Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 103–108.

    Google Scholar 

  • Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. 1993b. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 742–748.

    Google Scholar 

  • Tuba, Z., Lichtenthalter, H. K., Csintalan, Zs., Nagy, Z. & Szente, K. 1994. Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. Planta 192: 414–420.

    Google Scholar 

  • Tuba, Z., Lichtenthalter, H. K., Csintalan, Zs., Nagy, Z. & Szente, K. 1996. Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol. Plant. 96: 383–388.

    Google Scholar 

  • Tuba, Z., Smirnoff, N., Csintalan, Zs., Szente, K. & Nagy, Z. 1997. Respiration during slow desiccation of the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida at present-day CO2 concentration. J. Plant Physiol. Biochem. 35: 381–386.

    Google Scholar 

  • Tuba, Z., Proctor, M. C. F. & Csintalan, Zs. 1998. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Reg. 24: 211–217.

    Google Scholar 

  • Tucker, E. B., Costerton, J.W. & Bewley, J. D. 1975. The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Can. J. Bot. 53: 94–101.

    Google Scholar 

  • Wellington, P. S. 1956. Studies on the germination of cereals. I. The germination of wheat grains in the ear during development, ripening and after-ripening. Ann. Bot. 20: 105–120.

    Google Scholar 

  • Werner, O., Espin, R. M. R., Bopp, M. & Atzorn, R. 1991. Abscisicacid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186: 99–103.

    Google Scholar 

  • Wood, A. J. & Oliver, M. J. 1999. Translational control in plant stress: Formation of messenger ribonucleoprotein complexes (mRNPs) in Tortula ruralis in response to desiccation. Plant J. 18(4): 359–370.

    Google Scholar 

  • Wood, A. J., Duff, R. J. & Oliver, M. J. 1999. Expressed sequence Tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol. 40: 361–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, M.J., Tuba, Z. & Mishler, B.D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecology 151, 85–100 (2000). https://doi.org/10.1023/A:1026550808557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026550808557

Keywords

Navigation