Skip to main content
Log in

The new heterozygosity theory of mate choice and the MHC

  • Published:
Genetica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersson, M., 1994. Sexual Selection. Princeton University Press, Princeton.

    Google Scholar 

  • Arcaro, K. & A. Eklund, 1999. A review of MHC-based mate preferences and fostering experiments in two congenic strains of mice. Genetica 104: 241-244.

    Article  CAS  Google Scholar 

  • Bakker, T.C.M. & A. Pomiankowski, 1995. The genetic basis of female mate preferences. J. Evol. Biol. 8: 129-171.

    Article  Google Scholar 

  • Beauchamp, G.K., K. Yamazaki, J. Bard & E.A. Boyse, 1988. Pre-weaning experience in the control of mating preferences by genes in the major histocompatibility complex of the mouse. Behav. Genet. 18: 537-547.

    Article  PubMed  CAS  Google Scholar 

  • Borgia, G., 1979. Sexual selection and the evolution of mating systems, pp. 19-80 in Sexual Selection and Reproductive Competition in Social Insects, edited by M.S. Blum and N.A. Blum. Academic Press, New York.

    Google Scholar 

  • Briles, W.E., R.W. Briles, R.E. Taffs & H.A. Stone, 1983. Resistance to a malignant lymphoma in chickens is mapped to subregion of major histocompatibility (B) complex. Science 219: 977-979.

    PubMed  CAS  Google Scholar 

  • Brncic, D. & S. Koref-Santibanez, 1964. Mating activity of homoand heterokaryotypes in Drosophila pavani. Genetics 49:5 85- 591.

    Google Scholar 

  • Brown, J.L., 1983a. Cooperation - a biologist's dilemma, pp. 1-37 in Advances in the Study of Behavior, edited by J.S. Rosenblatt, R.A. Hinde, C. Beer and M. Busnel. Academic Press, New York.

    Google Scholar 

  • Brown, J.L., 1983b. Some paradoxical goals of cells and organisms: The role of the MHC, pp. 111-124 in Ethical Questions in Brain and Behavior, edited by D.W. Pfaff. Springer-Verlag, New York.

    Google Scholar 

  • Brown, J.L., 1994. Mexican Jay, pp. 1-16 in The Birds of North America, edited by A. Poole, P. Stettenheim and F. Gill. Academy of Natural Sciences of Philadelphia, American Ornithologists' Union, Philadephia, Washington DC.

    Google Scholar 

  • Charlesworth, B., 1988. The evolution of mate choice in a fluctuating environment. J. Theo. Biol. 130: 191-204.

    CAS  Google Scholar 

  • Cothran, E.G., R.K. Chesser, M.H. Smith & P.E. Johns, 1983. Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution 37: 282–291.

    Article  Google Scholar 

  • Crocker, G. & T. Day, 1987. An advantage to mate choice in the seaweed fly, Coelopa frigida. Behav. Ecol. Sociobiol. 20: 295-302.

    Article  Google Scholar 

  • Cuthill, I.C. & J.P. Swaddle, 1994. Preference for symmetric males by female zebra finches. Nature 367: 165-166.

    Article  Google Scholar 

  • Darwin, C. 1859. On the Origin of Species. Murray, London.

    Google Scholar 

  • Day, T.H. & R.K. Butlin, 1987. Non-random mating in natural populations of the seaweed fly, Coelopa frigida. Heredity 58: 213-220.

    Google Scholar 

  • Day, T.H., S. Miles, M.D. Pilkington & R.K. Butlin, 1987. Differential mating success in populations of seaweed flies (Coelopa frigida). Heredity 58: 203-212.

    Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species., 1st edn. Columbia Univ. Press, New York.

    Google Scholar 

  • Dobzhansky, T., 1947. Genetics of natural populations: XIV. A response of certain gene arrangements in the third chromosome of D. pseudoobscura to natural selection. Genetics 42: 142- 160.

    Google Scholar 

  • Dobzhansky, T. & B. Wallace, 1953. The genetics of homeostasis in Drosophila. Proc. Natl. Acad. Sci. USA 39: 162-171.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, P.C. & R.M. Zinkernagel, 1975a. A biological role for the major histocompatibility antigens. Lancet i: 1406.

  • Doherty, P.C. & R.M. Zinkernagel, 1975b. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256: 50-52.

    Article  PubMed  CAS  Google Scholar 

  • Eanes, W.F., 1981. Enzyme heterozygosity and morphological variance. Nature 290: 609-610.

    Article  Google Scholar 

  • Ehrman, L. & P.A. Parsons, 1976. The Genetics of Behavior. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Eklund, A.C., 1995. The major histocompatibility complex and mate choice in wild house mice (Mus domesticus). PhD dissertation, State University of New York, Albany.

    Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Fisher, R.A., 1915. The evolution of sexual preference. Eugenics Rev. 7: 184-192.

    Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Gaffney, P.M., 1990. Enzyme heterozygosity, growth rate, and viability in Mytilus edulis: Another look. Evolution 44: 204- 210.

    Article  Google Scholar 

  • Gilburn, A.A. & T.H. Day, 1994. Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. Proc. R. Soc. London B 255: 159-165.

    Google Scholar 

  • Hamilton, W.D. & M. Zuk, 1982. Heritable true fitness and bright birds: A role for parasites? Science 218: 384-387.

    PubMed  CAS  Google Scholar 

  • Hill, A.V.S., J. Elvin, A.C. Willis, M. Aidoo, C.E.M. Allsopp, F.M. Gotch, X.M. Gao, M. Takiguchi, B.M. Greenwood, A.R.M. Townsend, A.J. McMichael & H. Whittle C, 1992a. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360: 434-439.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A.V.S., D. Kwiatkowski, A.J. McMichael, B.M. Greenwood & S. Bennett, 1992b. Reply. Nature 355: 403.

    Article  Google Scholar 

  • Jazwinski, S.M., 1996. Longevity, genes, and aging. Science 273: 54-59.

    PubMed  CAS  Google Scholar 

  • Jones, J.S. & L. Partridge, 1983. Tissue rejection: The price of sexual acceptance? Nature 304: 484-485.

    Article  PubMed  CAS  Google Scholar 

  • Keller, L., 1994. Rewards of promiscuity. Nature 372: 229-230.

    Article  CAS  Google Scholar 

  • King, D.P.F., 1985. Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54: 289-296.

    PubMed  Google Scholar 

  • Klein, J., 1986. Natural History of the Major Histocompatibility Complex. John Wiley & Sons, New York.

    Google Scholar 

  • Klein, J. & D. Klein, 1991. Molecular Evolution of the Major Histocompatibility Complex. Springer-Verlag, Berlin.

    Google Scholar 

  • Koehn, R.K., W.J. Diehl & T.M. Scott, 1988. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis. Genetics 118: 121-130.

    PubMed  CAS  Google Scholar 

  • Koehn, R.K. & P.M. Gaffney, 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Marine Biol. 82: 1-7.

    Article  Google Scholar 

  • Leary, R.F., F.W. Allendorf & K.L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71-72.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, T., R. Shine, J. Loman & T. Hakansson, 1992. Why do female adders copulate so frequently? Nature 355: 440-441.

    Article  Google Scholar 

  • Manning, J.T. & M.A. Hartley, 1991. Symmetry and ornamentation are correlated in the peacock's train. Anim. Behav. 42: 1020-1021.

    Article  Google Scholar 

  • Manning, J.T. & L. Ockenden, 1994. Fluctuating asymmetry in racehorses. Nature 370: 185-186.

    Article  PubMed  CAS  Google Scholar 

  • Mitton, J.B., 1993. Enzyme heterozygosity, metabolism, and developmental stability. Genetica 89: 47-65.

    Article  CAS  Google Scholar 

  • Mitton, J.B., 1997. Selection in Natural Populations. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Mitton, J.B., W.S.F. Schuster, E.G. Cothran' J.C. DeFries, 1993. Correlation between the individual heterozygosity of parents and their offspring. Heredity 71: 59-63.

    PubMed  Google Scholar 

  • Mitton, J.D. & R.K. Koehn, 1985. Shell shape variation in the blue mussel, Mytilus edulis L., and its association with enzyme heterozygosity. J. Exp. Marine Biol. Ecol. 90: 73-80.

    Article  Google Scholar 

  • Moller, A.P., 1990. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav. 40: 1185-1187.

    Article  Google Scholar 

  • Moller, A.P., 1992. Female swallow preference for symmetrical male sexual ornaments. Nature 357: 238-240.

    Article  PubMed  CAS  Google Scholar 

  • Moller, A.P., 1993. Developmental stability, sexual selection, and the evolution of secondary sexual characters. Etologia 3: 199- 208.

    Google Scholar 

  • Moller, A.P., 1996. Sexual selection, viability selection, and developmental stability in the domestic fly Musca domestica. Evolution 50: 746-752.

    Article  Google Scholar 

  • Olsson, M., T. Madsen, R. Shine, A. Gullberg & H. Tegelström, 1994. Can female adders multiply? Nature 369: 528.

    Article  Google Scholar 

  • Parham, P. & T. Ohta, 1996. Population biology of antigen presentation by MHC class I molecules. Science 272: 67-74.

    PubMed  CAS  Google Scholar 

  • Partridge, L., 1983. Non-random mating and offspring fitness, pp. 227-255 in Mate Choice, edited by P. Bateson. Cambridge University Press, Cambridge.

    Google Scholar 

  • Paterson, S. & J.M. Pemberton, 1996. Effects of major histocompatibility complex (MHC) variation on parasite burden and fitness in an unmanaged population of Soay Sheep (Ovis aries L.).

  • Petrie, M., T. Halliday & C. Sanders, 1991. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41: 323-332.

    Article  Google Scholar 

  • Pierce, B.A. & J.B. Mitton, 1982. Allozyme heterozygosity and growth in the tiger salamander Ambystoma tigrinum. J. Heredity 73: 250-253.

    CAS  Google Scholar 

  • Pogson, G.H. & E. Zouros, 1994. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placopecten magellanicus: Atest of the associative overdominance hypothesis. Genetics 137: 221-231.

    PubMed  CAS  Google Scholar 

  • Robertson, F.W. & E.C. Reeve, 1952. Heterozygosity, environmental variation and heterosis. Nature 179: 286-287.

    Article  Google Scholar 

  • Scribner, K.T. & M.H. Smith, 1990. Genetic variability and antler development, pp. 460-473 in Horns, Pronghorns, and Antlers, edited by G.A. Bubenik and A.B. Bubenik. Springer, New York.

    Google Scholar 

  • Scribner, K.T., M.H. Smith & P.E. Johns, 1989. Environmental and genetic components of antler growth in white-tailed deer. J. Mammal. 70: 284-291.

    Google Scholar 

  • Serradilla, J.M. & F.J. Ayala, 1983. Alloprocoptic selection: A mode of natural selection promoting polymorphism. Proc. Natl. Acad. Sci. USA 80: 2022-2025.

    Article  PubMed  Google Scholar 

  • Shull, G.H., 1914. Duplicate genes for capsule form in Bursa bursa pastoris. Z. Ind. Abst. Vererb. 12: 97-149.

    Article  Google Scholar 

  • Singh, S.M. & E. Zouros, 1978. Genetic variation associated with growth rate in the American oyster Crassostrea virginica. Evolution 32: 342-353.

    Article  Google Scholar 

  • Smith, D.A.S., 1975. Sexual selection in a wild population of the butterfly Danaus chrysippus L. Science 187: 664-665.

    Google Scholar 

  • Smith, D.A.S., 1981. Heterozygous advantage expressed through sexual selection in a polymorphic African butterfly. Nature 289: 174-175.

    Article  Google Scholar 

  • Soule, M.E. & S.Y. Yang, 1974. Genetic variation in side-blotched lizards on islands in the Gulf of California. Evolution 27: 593- 600.

    Article  Google Scholar 

  • Spiess, E. & B. Langer, 1966. Mating control by gene arrangements in Drosophila pseudoobscura. Genetics 54: 1139-1149.

    Google Scholar 

  • Swaddle, J.P. & M.S. Witter, 1994. Food, feathers and fluctuating asymmetry. Proc. R. Soc. London B 255: 147-152.

    Google Scholar 

  • Thornhill, R., 1992a. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japonica: Mecoptera). Behav. Ecol. 3: 277-283.

    Google Scholar 

  • Thornhill, R., 1992b. Fluctuating asymmetry and the mating system of the Japanese scorpionfly. Anim. Behav. 44: 867- 879.

    Article  Google Scholar 

  • Thornhill, R. & S. Gangestad, 1993. Human facial beauty: Averageness, symmetry and parasite pressure. Human Nature 4: 237-269.

    Google Scholar 

  • von Schantz, T., H. Wittzell, G. Goransson, M. Grahn & K. Persson, 1996. MHC genotype and male ornamentation: Genetic evidence for the Hamilton-Zuk model. Proc. R. Soc. London B 263: 265-271.

    CAS  Google Scholar 

  • Vrijenhoek, R.V. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 767-768.

    Article  Google Scholar 

  • Watt, W.B. & C.L. Boggs, 1987. Allelic isozymes as probes of the evolution of metabolic organization, pp. 27-47 in Isozymes: Current Topics in Biological and Medical Research, edited by M.C. Rattazzi, J.C. Scandalios and G.S. Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Watt, W.B., P.A. Carter & S.M. Blower, 1985. Adaptation at specific loci: IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics 109: 157- 175.

    PubMed  CAS  Google Scholar 

  • Watt, W.B., P.A. Carter & K. Donohue, 1986. Females' choice of “good genotypes” as mates is promoted by an insect mating system. Science 233: 1187-1190.

    PubMed  CAS  Google Scholar 

  • Wilcockson, R.W., C.S. Crean & T.H. Day, 1995. Heritability of a sexually selected character expressed in both sexes. Nature 374: 158-159.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G.C., 1966. Adaptation and Natural Selection. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Yamazaki, K., G.K. Beauchamp, D. Kupniewski, J. Bard, L. Thomas & E.A. Boyse, 1988. Familial imprinting determines H-2 selective mating preferences. Science 240: 1331-1332.

    PubMed  CAS  Google Scholar 

  • Yamazaki, K., E.A. Boyse, V. Mike, H.T. Thaler, B.J. Mathieson, J. Abbott, J. Boyse & Z.A. Zayas, 1976. Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med. 144: 1324-1335.

    Article  PubMed  CAS  Google Scholar 

  • Yezerinac, S.M., S.C. Lougheed & P. Handford, 1992. Morphological variability and enzyme heterozygosity: Individual and population level correlations. Evolution 46: 1959- 1964.

    Article  Google Scholar 

  • Zahavi, A., 1975. Mate selection - a selection for a handicap. J. Theo. Biol. 53: 205-214.

    Article  CAS  Google Scholar 

  • Zouros, E., 1987. On the relationship between heterozygosity and heterosis: Anevaluation of the evidence from marine mollusks, pp. 255-270 in Isozymes: Current Topics in Biological and Medical Research, edited by M.C. Rattazzi, J.G. Scandalios and G.S. Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Zouros, E. & D.W. Foltz, 1987. The use of allelic isozyme variation for the study of heterosis, pp. 1-59 in Isozymes: Current Topics in Biological and Medical Research, edited by M.C. Rattazzi, J.C. Scandalios and G.S. Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J.L. The new heterozygosity theory of mate choice and the MHC. Genetica 104, 215–221 (1998). https://doi.org/10.1023/A:1026409220292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026409220292

Keywords

Navigation