Skip to main content
Log in

Serum Protein Binding of Nonsteroidal Antiinflammatory Drugs: A Comparative Study

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The unbound fraction in serum f u , is a critical parameter in describing and understanding the pharmacokinetics of NSAIDs. We compared f u for 6 different NSAIDs using ultrafiltration of pooled serum at pH 7.4 and 24C. Measurements covered a wide concentration range in order to define binding affinity and number of binding sites. HPLC was used to measure drug concentrations in serum and ultrafiltrate. Direct injection of ultrafiltrate and serum (diluted 250X) permitted quantitation down to approximately 70 nM for most of the NSAIDs, i.e., approximately 15–20 ng/ml. Assuming binding only to albumin, the data were fitted to a model of two classes of binding sites with dissociation constants K1 and K2. The lowest K1 (highest affinity) was found with flurbiprofen, 0.0658 μM, the highest with ketoprofen, 5.23 μM, an 80-fold difference. At low drug concentrations, f u becomes virtually constant and approaches a lower limit, \({\text{f}}_u^{\min } \). The following \({\text{f}}_u^{\min } \) values were calculated: diclofenac 0.21% fenoprofen 0.25%, flurbiprofen 0.022%, ketoprofen 0.52%, naproxen 0.039%, and tolmetin 0.37%. Thus the least bound NSAID, ketoprofen, had a value 24-fold that of the most highly bound, flurbiprofen. The NSAIDs also differed widely with regard to the extent of variation in f u within the range of therapeutic concentrations, and hence with regard to their potential as displacers of other drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Øie and T. N. Tozer. Effect of altered plasma protein binding on apparent volume of distribution. J. Pharm. Sci. 68:1203–1205 (1979).

    Article  PubMed  Google Scholar 

  2. S. Øie, T. W. Guentert, and T. N. Tozer. Effect of saturable binding on the pharmacokinetics of drugs: a simulation. J. Pharm. Pharmacol. 32:471–477 (1980).

    Article  PubMed  Google Scholar 

  3. J. H. Lin, D. M. Cocchetto, and D. E. Duggan. Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal anti-inflammatory drugs. Clin. Pharmacokin. 12:402–432 (1987).

    Article  CAS  Google Scholar 

  4. J. V. Willis, M. J. Kendall, and D. J. Jack. A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium. Eur. J. Clin. Pharmacol. 18:415–418 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. G. Levy. Effect of plasma protein binding of drugs on duration and intensity of pharmacological activity. J. Pharm. Sci. 65:1264–1265 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. A. S. Joshi, H. J. Pieniaszek, C. Y. Quon, and S-Y. P. King. Plasma protein binding of highly bound drugs: Implications of radiochemical impurities. J. Pharm. Sci. 83:1187–1188 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. A. Mukherjee, V. G. Hale, O. Borga, and R. Stein. Predictability of the clinical potency of NSAIDs from the preclinical pharmacodynamics in rats. Inflamm. Res. 45:531–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. R. H. Hook, H. Boxenbaum, G. A. Thompson, and R. A. Okerholm. Human serum and plasma protein binding of enoximone and its sulfoxide metabolite. J. Pharm. Sci. 77:1012–1017 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. G. Scatchard. The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672 (1949).

    Article  CAS  Google Scholar 

  10. Ø. Hundal, H. E. Rugstad, and G. Husby. Naproxen free plasma concentrations and unbound fractions in patients with osteoarthritis: relation to age, sex, efficacy, and adverse events. Ther. Drug Monit. 13:478–484 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. K. M. Piafsky and O. Borgå. Plasma protein binding of basic drugs. II Importance of α1-acid glycoprotein for interindividual variation. Clin. Pharmacol. Ther. 22:545–549 (1977).

    CAS  PubMed  Google Scholar 

  12. J.-M. Chamouard, J. Barre, S. Urien, G. Houin, and J-P. Tillement. Diclofenac binding to albumin and lipoproteins in human serum. Biochem. Pharmacol. 34:1695–1700 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. K. K. H. Chan, K. H. Vyas, and K. D. Brandt. In vitro protein binding of diclofenac sodium in plasma and synovial fluid. J. Pharm. Sci. 76:105–108 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. W. Reiss, H. Stierlin, P. Degen, J. W. Faigle, A. Gérardin, J. Moppert, A. Sallman, K. Schmid, A. Schweizer, M. Sulc, W. Theobald, and J. Wagner. Pharmacokinetics and metabolism of the anti-inflammatory agent Voltaren. Scand. J. Rheumatol. Suppl. 22:17–29 (1978).

    Article  Google Scholar 

  15. V. A. John. The pharmacokinetics and metabolism of diclofenac sodium (Voltarol®) in animals and man. Rheumatol. Rehabil. Suppl. 2:22–37 (1979). (Proceedings of an International Symposium, Tangier, March 1978.)

    Google Scholar 

  16. A. Rubin, P. Warrick, R. L. Wolen, S. M. Chernish, A. S. Ridolfo, and C. M. Gruber Jr. Physiological disposition of fenoprofen in man. III. Metabolism and protein binding of fenoprofen. J. Pharmacol. Exp. Ther. 183:449–457 (1972).

    CAS  PubMed  Google Scholar 

  17. P. C. Risdall, S. S. Adams, E. L. Crampton, and B. Marchant. The disposition and metabolism of flurbiprofen in several species including man. Xenobiotica 8:691–704 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. L. Aarons, R. Salisbury, M. Alam-Siddiqi, L. Taylor, and D. M. Grennan. Plasma and synovial fluid kinetics of flurbiprofen in rheumatoid arthritis. Br. J. Clin. Pharmacol. 21:155–163 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. G. J. Szpunar, K. S. Albert, and J. G. Wagner. Pharmacokinetics of flurbiprofen in man II. Plasma protein binding. Res. Commun. Chem. Pathol. Pharmacol. 64:17–30 (1989).

    CAS  PubMed  Google Scholar 

  20. M. P. Knadler, D. C. Brater, and S. D. Hall. Plasma protein binding of flurbiprofen: Enantioselectivity and influence of pathophysiological status. J. Pharmacol. Exp. Ther. 249:378–385 (1989).

    CAS  PubMed  Google Scholar 

  21. M. P. Knadler, D. C. Brater, and S. D. Hall. Stereoselective disposition of flurbiprofen in uraemic patients. Br. J. Clin. Pharmacol. 33:377–383 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. R. Blouin, I. Chaudhary, K. Nishihara, and S. Cox. The effects of liver and renal disease on stereoselective serum binding of flurbiprofen. Br. J. Clin. Pharmacol. 35:62–64 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. P. J. Hayball, R. L. Nation, F. Bochner, J. L. Newton, R. A. Massy-Westropp, and D. P. Hamon. Plasma protein binding of ketoprofen enantiomers in man: method development and its application. Chirality. 3:460–466 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. A. Mortensen, E. B. Jensen, P. B. Petersen, S. Husted, and F. Andreasen. The determination of naproxen by spectrofluorometry and its binding to serum proteins. Acta Pharmacol. Toxicol. 44:277–283 (1979).

    Article  CAS  Google Scholar 

  25. R. A. Upton, R. L. Williams, J. Kelly, and R. M. Jones. Naproxen pharmacokinetics in the elderly. Br. J. Clin. Pharmacol. 18:207–214 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. R. Runkel, E. Forchielli, H. Sevelius, M. Chaplin, and E. Segre. Nonlinear plasma level response to high doses of naproxen. Clin. Pharmacol. Ther. 15:261–266 (1974).

    CAS  PubMed  Google Scholar 

  27. J. C. Ojingwa, H. Spahn-Langguth, and L. Z. Benet. Reversible binding of tolmetin, zomepirac, and their glucuronide conjugates to human serum albumin and plasma. J. Pharmacokin. Biopharm. 22:19–40 (1994).

    Article  CAS  Google Scholar 

  28. H. Kurz, H. Trunk, and B. Weitz. Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration. ultracentrifugation, gel filtration. Arzneim. Forsch. 27:1373–1380 (1977).

    CAS  Google Scholar 

  29. K. Tegnér, O. Borgå, and I. Svensson. Protein binding of enprofylline. Eur. J. Clin. Pharmacol. 25:703–708 (1983).

    Article  PubMed  Google Scholar 

  30. M. Brinkschulte and U. Breyer-Pfaff. Binding of tricyclic antidepressants and perazine to human plasma. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 308:1–7 (1979).

    Article  CAS  Google Scholar 

  31. C. B. Kristensen. Imipramine serum protein binding in healthy subjects. Clin. Pharmacol. Ther. 34:689–694 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. O. G. Nilsen, L. Storstein, and S. Jacobsen. Effect of heparin and fatty acids on the binding of quinidine and warfarin in plasma. Biochem. Pharmacol. 26:22–235 (1977).

    Article  Google Scholar 

  33. P. K. M. Lunde, A. Rane, S. J. Yaffe, and F. Sjöqvist. Plasma protein binding of diphenylhydantoin in man. Clin. Pharmacol. Ther. 11:846–855 (1970).

    CAS  PubMed  Google Scholar 

  34. Ø. Hundal and H. E. Rugstad. Determination of free concentration of piroxicam and naproxen in plasma. The influence of experimental conditions in equilibrium dialysis. Fund. Clin. Pharmacol. 5:275–283 (1991).

    Article  CAS  Google Scholar 

  35. G. M. Pacifici and A. Viani. Methods of determining plasma and tissue binding of drugs. Clin. Pharmacokin. 23:449–468 (1992).

    Article  CAS  Google Scholar 

  36. L. J. Aarons and M. Rowland. Kinetics of drug displacement interactions. J. Pharmacokin. Biopharm. 9:181–190 (1981).

    Article  CAS  Google Scholar 

  37. R. Runkel, M. D. Chaplin, H. Sevelius, E. Ortega, and E. Segre. Pharmacokinetics of naproxen overdoses. Clin. Pharmacol. Ther. 20:269–277 (1976).

    CAS  PubMed  Google Scholar 

  38. G. J. Szpunar, K. S. Albert, G. G. Bole, J. N. Dreyfus, G. F. Lockwood, and J. G. Wagner. Pharmacokinetics of flurbiprofen in man I. Area/dose relationships. Biopharm. Drug Dispos. 8:273–283 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgå, O., Borgå, B. Serum Protein Binding of Nonsteroidal Antiinflammatory Drugs: A Comparative Study. J Pharmacokinet Pharmacodyn 25, 63–77 (1997). https://doi.org/10.1023/A:1025719827072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025719827072

Navigation