Skip to main content
Log in

Heparan sulfate 2-O-sulfotransferase (Hs2st) and mouse development

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Heparan sulphate 2-O-sulphotransferase (Hs2st) acts at an intermediate stage in the pathway of biosynthesis of heparan sulphate (HS), catalysing the transfer of sulphate from 3′-phosphoadenosine-5′-phosphosulfate (PAPS) to the C2-position of selected hexuronic acid residues within the maturing HS chain. It is well established that 2-O-sulphation within HS, particularly of iduronate residues, is essential for HS to participate in a variety of high-affinity ligand-binding interactions. HS plays a central role in embryonic development and cellular function, modulating the activities of an extensive range of growth factors. Interestingly, in contrast to the early failure of embryos entirely lacking HS, Hs2st −/− mice survive until birth, but die perinatally due to a complete failure of kidney formation. The phenotype of Hs2st −/− mutant kidneys suggests that signalling between two tissues, ureteric bud and metanephric mesenchyme, is disrupted. We discuss candidate signalling molecules that may mediate this interaction. The HS generated by these mice lacks 2-O-sulphate groups but is extensively modified above wild type levels by O-sulphation at C-6 of glucosamine-N-sulfate (GlcNS) residues. We will discuss the potentially altered role of this atypical HS in growth factor signalling. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selleck SB, Proteoglycans and pattern formation: Sugar biochemistry meets developmental genetics, Trends Genet 16, 206–12 (2000).

    PubMed  Google Scholar 

  2. Perrimon N, Bernfield M, Specificities of heparan sulphate proteoglycans in developmental processes, Nature 404, 725–8 (2000).

    PubMed  Google Scholar 

  3. Lyon M, Gallagher JT, Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion, Matrix Biol 17, 485–93 (1998).

    PubMed  Google Scholar 

  4. Giraldez AJ, Copley RR, Cohen SM, HSPG Modification by the Secreted Enzyme Notum Shapes theWingless Morphogen Gradient, Dev Cell 2, 667–76 (2002).

    PubMed  Google Scholar 

  5. Guimond SE, Turnbull JE, Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides, Curr Biol 9, 1343–6 (1999).

    PubMed  Google Scholar 

  6. Pye DA, Vives RR, Hyde P, Gallagher JT, Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: Differential requirements for the modulation of FGF-1 and FGF-2, Glycobiology 10, 1183–92 (2000).

    PubMed  Google Scholar 

  7. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT, Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants, J Biol Chem 269, 11216–23 (1994).

    PubMed  Google Scholar 

  8. Esko J, Lindahl, U, Molecular diversity of heparan sulfate, J Clin Invest 108, 169–73 (2001).

    PubMed  Google Scholar 

  9. Lindahl U, Kusche-Gullberg M, Kjellén L, Regulated diversity of heparan sulfate, J Biol Chem 273, 24979–82 (1998).

    PubMed  Google Scholar 

  10. Conrad HE, Heparin-Binding Proteins (Academic Press San Diego, 1998).

    Google Scholar 

  11. Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U, Domain structure of heparan sulfates from bovine organs, J Biol Chem 271, 17804–10 (1996).

    PubMed  Google Scholar 

  12. Merry CL, Lyon M, Deakin JA, Hopwood JJ, Gallagher JT, Highly sensitive sequencing of the sulfated domains of heparan sulfate, J Biol Chem 274, 18455–62 (1999).

    PubMed  Google Scholar 

  13. Safaiyan F, Lindahl U, Salmivirta M, Structural diversity of N-sulfated heparan sulfate domains: Distinct modes of glucuronyl C5 epimerization, iduronic acid 2-O-sulfation, and glucosamine 6-O-sulfation, Biochemistry 39, 10823–30 (2000).

    PubMed  Google Scholar 

  14. Gallagher JT, Heparan sulfate: Growth control with a restricted sequence menu, J Clin Invest 108, 357–61 (2001).

    PubMed  Google Scholar 

  15. Maccarana M, Casu B, Lindahl U, Minimal sequence in heparin/ heparan sulfate required for binding of basic fibroblast growth factor, J Biol Chem 268, 23898–905 (1993).

    PubMed  Google Scholar 

  16. Bullock SL, Fletcher JM, Beddington RS, Wilson VA, Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase, Genes Dev 12, 1894–906 (1998).

    PubMed  Google Scholar 

  17. Stanford WL, Cohn JB, Cordes SP, Gene-trap mutagenesis: Past, present and beyond, Nat Rev Genet 2, 756–68 (2001).

    PubMed  Google Scholar 

  18. Wilson VA, Manson L, Skarnes WC, Beddington RS, The T gene is necessary for normal mesodermal morphogenic cell movements during gastrulation, Development 121, 877–86 (1995).

    PubMed  Google Scholar 

  19. Friedrich G, Soriano P, Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice, Genes and Development 5, 1513–23 (1991).

    PubMed  Google Scholar 

  20. Skarnes WC, Moss JE, Hurtley SM, Beddington RS, Capturing genes encoding membrane and secreted proteins important for mouse development, Proc Natl Acad Sci USA 92, 6592–6 (1995).

    PubMed  Google Scholar 

  21. Lander ES, et al., Initial sequencing and analysis of the human genome, Nature 409, 860–921 (2001).

    PubMed  Google Scholar 

  22. Venter JC, et al., The sequence of the human genome, Science 291, 1304–51 (2001).

    PubMed  Google Scholar 

  23. Kobayashi M, Habuchi H, Yoneda M, Habuchi O, Kimata K, Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase, J Biol Chem 272, 13980–5 (1997).

    PubMed  Google Scholar 

  24. Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, Jenkins NA, Rosenberg RD, Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci, J Biol Chem 274, 5170–84 (1999).

    PubMed  Google Scholar 

  25. Habuchi H, Tanaka M, Habuchi O, Yoshida K, Suzuki H, Ban K, Kimata K, The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine, J Biol Chem 275, 2859–68 (2000).

    PubMed  Google Scholar 

  26. Aikawa J, Grobe K, Tsujimoto M, Esko JD, Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase: Structure and activity of the fourth member, NDST4, J Biol Chem 276, 5876–82 (2001).

    PubMed  Google Scholar 

  27. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM, Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice, Dev Biol 224, 299–311 (2000).

    PubMed  Google Scholar 

  28. Forsberg E, et al., Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme, Nature 400, 773–6 (1999).

    PubMed  Google Scholar 

  29. Shworak NW, Post M, Enjoi K, Christi P, Lech M, Beeler D, Rayburn H, Rosenberg RD, 3-OST1 deficient mice lack an obvious procoagulant phenotype, Glycobiology 10, Abstract 20 (2000).

    Google Scholar 

  30. Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellén L, Forsberg E, Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1, J Biol Chem 275, 25926–30 (2000).

    PubMed  Google Scholar 

  31. Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA, Gallagher JT, The molecular phenotype of heparan sulfate in the Hs2st-/-mutant mouse, J Biol Chem 276, 35429–34 (2001).

    PubMed  Google Scholar 

  32. Bai X, Esko JD, An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation, J Biol Chem 271, 17711–7 (1996).

    PubMed  Google Scholar 

  33. Gallagher JT, Walker A, Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides, Biochem J 230, 665–74 (1985).

    PubMed  Google Scholar 

  34. Rapraeger AC, Krufka A, Olwin BB, Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation, Science 252, 1705–8 (1991).

    PubMed  Google Scholar 

  35. Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC, Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4, J Biol Chem 268, 23906–14 (1993).

    PubMed  Google Scholar 

  36. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64, 841–8 (1991).

    PubMed  Google Scholar 

  37. Isihara M, Kariya Y, Kikuchi H, Minamisawa T, Yoshida K, Importance of 2-O-sulphate groups of uronate residues in heparin for activation of FGF-1 and FGF-2, J Biochem 121, 345–9 (1997).

    PubMed  Google Scholar 

  38. Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT, Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate, J Biol Chem 267, 10337–41 (1992).

    PubMed  Google Scholar 

  39. Kreuger J, Salmivirta M, Sturiale L, Gimenez-Gallego G, Lindahl U, Sequence analysis of heparan sulfate epitopes with graded affinities for FGF-1 and FGF-2, J Biol Chem 276, 30744–52 (2001).

    PubMed  Google Scholar 

  40. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC, Heparin structure and interactions with basic fibroblast growth factor, Science 271, 1116–20 (1996).

    PubMed  Google Scholar 

  41. Lyon M, Rushton G, Askari JA, Humphries MJ, Gallagher JT, Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin, J Biol Chem 275, 4599–606 (2000).

    PubMed  Google Scholar 

  42. Ostrovsky O, Berman B, Gallagher JT, Mulloy B, Fernig DG, Delehedde M, Ron D, Differential effects of heparain saccharides on the formation of specific FGF and FGF-receptor complexes, J Biol Chem 277, 2444–53 (2002).

    PubMed  Google Scholar 

  43. Lander A, Proteoglycans: Master regulators of molecular encounter? Matrix Biology 17, 465–72 (1998).

    PubMed  Google Scholar 

  44. Rahmoune H, Chen HL, Gallagher JT, Rudland PS, Fernig DG, Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate, J Biol Chem 273, 7303–10 (1998).

    PubMed  Google Scholar 

  45. Stringer SE, Gallagher JT, Specific binding of the chemokine platelet factor 4 to heparan sulfate, J Biol Chem 272, 20508–14 (1997).

    PubMed  Google Scholar 

  46. Lortat-Jacob H, Turnbull JE, Grimaud JA, Molecular organization of the interferon gamma-binding domain in heparan sulphate, Biochem J 310, 497–505 (1995).

    PubMed  Google Scholar 

  47. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P, Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system, Development 109, 787–95 (1990).

    PubMed  Google Scholar 

  48. Davies J, Lyon M, Gallagher J, Garrod D, Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development, Development 121, 1507–17 (1995).

    PubMed  Google Scholar 

  49. Fisher CE, Michael L, Barnett MW, Davies J, ErkMAPkinase regulates branching morphogenesis in the developing mouse kidney, Development 128, 4329–38 (2001).

    PubMed  Google Scholar 

  50. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S, Defects of urogenital development in mice lacking Emx2, Development 124, 1653–64 (1997).

    PubMed  Google Scholar 

  51. Schuchardt A, D'Agati V, Larsson-Blomberg L, Constantini F, Pachnis V, Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret, Nature 367, 319–20 (1994).

    PubMed  Google Scholar 

  52. Pichel JG, et al., Defects in enteric innervation and kidney development in mice lacking GDNF, Nature 382, 73–6 (1996).

    PubMed  Google Scholar 

  53. Sanchez MP, Silos Santiago I, Frisen J, He B, Lira SA, Barbacid M, Renal agenesis and the absence of enteric neurons in mice lacking GDNF, Nature 382, 70–3 (1996).

    PubMed  Google Scholar 

  54. Moore MW, et al., Renal and neuronal abnormalities in mice lacking GDNF, Nature 382, 76–9 (1996).

    PubMed  Google Scholar 

  55. Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP, Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips, Development 122, 3627–37 (1996).

    PubMed  Google Scholar 

  56. Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G, Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning, EMBO J 17, 1642–55 (1998).

    PubMed  Google Scholar 

  57. De-Moerlooze L, Spencer Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C, An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymalepithelial signalling during mouse organogenesis, Development 127, 483–92 (2000).

    PubMed  Google Scholar 

  58. Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK, Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis, Mech Dev 109, 123–35 (2001).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, V.A., Gallagher, J.T. & Merry, C.L. Heparan sulfate 2-O-sulfotransferase (Hs2st) and mouse development. Glycoconj J 19, 347–354 (2002). https://doi.org/10.1023/A:1025325222530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025325222530

Navigation