Skip to main content
Log in

Mapping the carbon reduction cycle: a personal retrospective

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic carbon reduction cycle was elucidated through the use of 14CO2 during photosynthesis to label metabolic intermediates. Mapping and proof of the cycle required identification of labeled metabolites, observation of changes in levels of labeled metabolites during transitions from light to dark and from high to low CO2 levels, determination of intramolecular distribution of 14C within the metabolites after a few seconds of photosynthesis with 14CO2, and estimation of metabolite concentrations, used to calculate true free energy changes at each step in the cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bassham JA (1979) The reductive pentose phosphate cycle and its regulation. In Gibbs M and Latzko E (eds) Photosynthesis II. Photosynthetic Carbon Metabolism and Related Processes. Encyclopedia of Plant Physiology, New Series, Vol 6, pp 9–28. Springer-Verlag, Berlin

    Google Scholar 

  • Bassham JA and Calvin M (1957) The Path of Carbon in Photosynthesis. Prentice-Hall, Englewood Cliffs, New Jersey, 104 pp

    Google Scholar 

  • Bassham JA and Kirk M (1960) Dynamics of the photosynthesis of carbon compounds. 1. Carboxylation reactions. Biochim Biophys Acta 43: 447–464

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA and Kirk M (1962) The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis by Chlorella. Biochem Biophys Res Commun 9: 376–380

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA and Krause (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta 189: 207–221

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA, Benson AA and Calvin M (1950) The path of carbon in photosynthesis. VIII. The role of malic acid. J Biol Chem 185: 781–787

    PubMed  CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT and Calvin M. (1954) The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76: 1760–1770

    Article  CAS  Google Scholar 

  • Bassham JA, Shibata K, Steenberg K, Bourdon J and Calvin M (1956) Photosynthetic cycle and respiration: light and dark transients. J Am Chem Soc 78: 4120–4124

    Article  CAS  Google Scholar 

  • Bassham JA, Birt LM, Hems R and Loening VE (1959) Determination of the reduced and oxidized pyridine nucleotides in animal tissues. Biochem J 73: 491–499

    PubMed  CAS  Google Scholar 

  • Benson AA (1951) Identification of ribulose in C14O2 photosynthesis products. J Am Chem Soc 73: 2971

    Article  CAS  Google Scholar 

  • Benson AA (2002a) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73: 29–49

    Article  PubMed  CAS  Google Scholar 

  • Benson AA (2002b) Paving the path. Ann Rev Plant Biol 53: 1–25

    Article  CAS  Google Scholar 

  • Benson AA and Bassham JA (1948) Chemical degradation of isotopic succinic and malic acids. J Am Chem Soc 70: 3939

    Article  CAS  Google Scholar 

  • Benson AA and Calvin M (1950) The path of carbon in photosynthesis VII. Respiration and photosynthesis. J Exp Bot 1: 63–68

    Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA and Stepka W (1950) The path of carbon in photosyntheis. V. Paper chromatography and radioautography of the products. J Am Chem Soc 72: 1710–1718

    Article  CAS  Google Scholar 

  • Benson AA, Bassham JA and Calvin M (1951) Sedoheptulose in photosynthesis by plants. J Am Chem Soc 73: 2970

    Article  CAS  Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Hall AG, Hirsch HE, Kawaguchi S, Lynch V, and Tolbert NE (1952). The path of carbon in photosynthesis XV ribulose and sedoheptulose. J Biol Chem 196: 703–715

    PubMed  CAS  Google Scholar 

  • Branch GEK and Calvin M (1941) The Theory of Organic Chemistry. An Advanced Course. Prentice Hall, New York, 523 pp

    Google Scholar 

  • Burton K and Krebs HA (1953) Free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis, and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of the adenosine triphosphate. Biochem J 54: 86–94

    PubMed  CAS  Google Scholar 

  • Burton K and Wilson TH (1953) The free energy changes for the reduction of phosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol-1–phosphate. Biochem J 54: 86–94

    PubMed  CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis research and related activities. Photosynth Res 21: 2–16

    Google Scholar 

  • Calvin M and Bassham JA (1962) The Photosynthesis of Carbon Compounds. WA Benjamin, New York, 127 pp

    Google Scholar 

  • Calvin M and Benson AA (1948) The path of carbon in photosynthesis. Science 107: 476–480

    CAS  Google Scholar 

  • Calvin M and Massini P (1952) The path of carbon in photosynthesis XX. The steady state. Experiencia VIII: 445–457

    Article  Google Scholar 

  • Dent CE, Stepka W and Steward FC (1947) Detection of the free amino acids of plant cells by partition chromatography. Nature 160: 682–683

    CAS  Google Scholar 

  • Gibbs M and Latzko E (eds) (1979) Photosynthesis II. Photosynthetic Carbon Metabolism and Related Processes Encyclopedia of Plant Physiology, New Series, Vol 6. Springer-Verlag, Berlin, 578 pp

  • Hatch MD (2002) C4 photosynthesis: discovery and resolution. Photosynth Res 73: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL, Smyrniotis PA and Klenow H (1953) The formation of sedoheptulose phosphate from pentose phosphate. J Biol Chem 205: 661–682

    PubMed  CAS  Google Scholar 

  • Horecker BL, Smyrniotis PA and Seegmiller JE (1951) The enzymatic conversion of 6–phosphogluconate to ribulose-5–phosphate and ribose-5–phosphate. J Biol Chem 193: 383–396

    PubMed  CAS  Google Scholar 

  • Hurwitz J, Weissbach A, Horecker BL and Smyrniotis PZ (1956) Spinach phosphoribulokinase. J Biol Chem 218: 769–783

    PubMed  CAS  Google Scholar 

  • Jensen RG (1979) The isolation of intact leaf cells. Protoplasts and chloroplasts. In Gibbs M and Latzko E (eds) Photosynthesis II. Photosynthetic Carbon Metabolism and Related Processes. Encyclopedia of Plant Physiology, New Series, Vol 6, pp 9–28. Springer-Verlag, Berlin

    Google Scholar 

  • Latzko E and Kelly GJ (1979) Enzymes of the reductive pentose phosphate cycle. In Gibbs M and Latzko E (eds) Photosynthesis II. Photosynthetic Carbon Metabolism and Related Processes. Encyclopedia of Plant Physiology, New Series, Vol 6, pp 239–249. Springer-Verlag, Berlin

    Google Scholar 

  • Martin AJP and Singe RLM (1941) A new form of chromatography employing two liquid phases. 1: a theory of chromatography. 2. Application to the microdetermination of the higher monoaminoacids in proteins. Biochem J 35: 1358–1368

    PubMed  CAS  Google Scholar 

  • Mayaudon J, Benson AA and Calvin M (1957) Ribulose-1,5–diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim Biophys Acta 23: 342–351

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL (2003) Affixing the O to Rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76: 53–63 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Quayle JR, Fuller RC, Benson AA and Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate. J Am Chem Soc 76: 3610–3612

    Article  CAS  Google Scholar 

  • Racker E, de la Haba G and Leder IG (1953) Thiamine pyrophosphate, a coenzyme for transketolase. J Am Chem Soc 75: 1010–1011

    Article  CAS  Google Scholar 

  • Ruben S and Kamen MD (1941) Long-lived radioactive carbon: C14. Phys Rev 59: 349–354

    Article  CAS  Google Scholar 

  • Ruben S, Kamen MD, Hassid WZ and DeVault DC (1939) Photosynthesis with radio-carbon. Science 90: 570–571

    CAS  Google Scholar 

  • Schou L, Benson AA, Bassham JA and Calvin M(1950) The path of carbon in photosynthesis, XI. The role of glycolic acid. Physiol Plant 3: 487–495

    Article  Google Scholar 

  • Smith DC, Bassham JA, and Kirk M (1961) Dynamics of photosynthesis of carbon compounds II. Amino acid synthesis. Biochim Biophys Acta 48: 299–313

    Article  CAS  Google Scholar 

  • Spreitzer RJ and Salvucci ME (2002)RUBISCO: structure, regulatory interactions and possibilities for a better enzyme. Ann Rev Plant Biol 53: 449–475

    Article  CAS  Google Scholar 

  • Stepka W, Benson AA and Calvin M (1948) The path of carbon in photosynthesis. II. Amino acids. Science 108: 304

    CAS  Google Scholar 

  • Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Ann Rev Plant Physiol 48: 1–25

    Article  CAS  Google Scholar 

  • Walker DA (2003) Chloroplasts in envelopes: CO2 fixation by fully functional intact chloroplasts. Photosynth Res 76: 319–327 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Weissbach A, Smyrniotis, PZ and Horecker BL (1954) Pentose phosphate and CO2 fixation with spinach extracts. J Am Chem Soc 76: 3611–3612

    Article  CAS  Google Scholar 

  • Wildman SG (1998)Discovery of Rubisco. In Kung SD and Yang SF (eds) Discoveries in Plant Biology, Chapter 12, pp 163–173. World Scientific, Singapore

    Google Scholar 

  • Wildman S (2002) Along the trail from fraction 1 protein to rubisco (ribulose bisphosphate carboxylase-oxygenase).Photosynth Res 73: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Wilson AT and Calvin M (1955) The photosynthetic cycle. CO2 dependent transients. J Am Chem Soc 77: 5948–5957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassham, J.A. Mapping the carbon reduction cycle: a personal retrospective. Photosynthesis Research 76, 35–52 (2003). https://doi.org/10.1023/A:1024929725022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024929725022

Navigation