Skip to main content
Log in

Apatite-forming ability of glass-ceramic apatite–wollastonite – polyethylene composites: effect of filler content

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The bioactivity of a range of glass-ceramic apatite–wollastonite (A–W) – polyethylene composites (AWPEXs) with glass-ceramic A–W volume percentages ranging from 10 to 50, has been investigated in an acellular simulated body fluid (SBF) with ion concentrations similar to those of human blood plasma. The formation of a biologically active apatite layer on the composite surface after immersion in SBF was demonstrated by thin-film X-ray diffraction (TF-XRD) and field-emission scanning electron microscopy (FE-SEM). An apatite layer was formed on all the composites, with the rate of formation increasing with an increase in glass-ceramic A–W percentage. For composites with glass-ceramic A–W filler contents ≥30 vol %, the apatite layer was formed within 12 h of immersion, which is a comparable time for apatite formation on monolithic glass-ceramic A–W. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) demonstrated that the apatite formation on AWPEX samples with 50 vol % filler content occurred in a manner similar to that seen on pure glass-ceramic A–W, in that the calcium, silicon, and magnesium ion concentrations increased and, conversely, a decrease was observed in the phosphate ion concentration. These results indicate that a suitable in vitro response was achieved on a composite incorporating particulate glass-ceramic A–W with a particularly favorable response being observed on the AWPEX sample with 50 vol % filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro and S. Higashi, Bull. Inst. Chem. Res., Kyoto Univ. 60 (1982) 260.

    Google Scholar 

  2. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  3. D. M. Liu and H. M. Chou, J. Mater. Sci.: Mater. Med. 5 (1994) 7.

    Google Scholar 

  4. T. Kokubo, Biomater. 12 (1991) 155.

    Google Scholar 

  5. A. Ravaglioli, A. Krajewski and G. De Portu, in “Bioceramics 1”, edited by H. Oonishi, H. Aoki and K. Sawai (Ishiyaku EuroAmerica, Inc., Tokyo, 1989) p. 13.

    Google Scholar 

  6. J. Y. Rho, R. B. Ashman and C. H. Turner, J. Biomech. 26 (1993) 111.

    Google Scholar 

  7. J. C. Behiri and W. Bonfield, ibid. 17 (1984) 25.

    Google Scholar 

  8. T. Yamamuro, in “Bioceramics 8”, edited by J. Wilson, L. L. Hench and D. C. Greenspan (Elsevier Science Ltd., Oxford, 1995) p. 123.

    Google Scholar 

  9. T. Yamamuro, in “Handbook of Bioactive Ceramics, Bioactive Glasses and Glass-ceramic, Vol. 1”, edited by T. Yamamuro, L. L. Hench and J. Wilson (CRC Press, Boca Raton, 1990) p. 335.

    Google Scholar 

  10. T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo and S. Ito, J. Biomed. Mater. Res. 19 (1985) 685.

    Google Scholar 

  11. T. Kokubo, S. Ito, M. Shigematsu, S. Sakka and T. Yamamuro, J. Mater. Sci. 22 (1987) 4067.

    Google Scholar 

  12. W. Bonfield, J. A. Bowman and M. D. Grynpas (1984), UK Patent 2,085,461B.

  13. W. Bonfield, J. A. Bowman and M. D. Grynpas (1991) US Patent 5,017,627.

  14. K. E. Tanner, R. N. Downes and W. Bonfield, Brit. Ceram. Trans. 93 (1994) 104.

    Google Scholar 

  15. W. Bonfield, in “Annals of the New York Academy of Sciences”, edited by P. Ducheyne and J. E. Lemons (New York Academy of Sciences, New York, 1988) p. 173.

    Google Scholar 

  16. M. Wang, T. Kokubo and W. Bonfield in “Bioceramics 9”, edited by T. Kokubo, T. Nakamura and F. Miyaji (Elsevier Science Ltd., Oxford, 1996) p. 387.

    Google Scholar 

  17. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, J. Biomed. Mater. Res. 24 (1990) 721.

    Google Scholar 

  18. M. Wang, D. Porter and W. Bonfield, Brit. Ceram. Trans. 93 (1994) 91.

    Google Scholar 

  19. T. Kitsugi, T. Yamamuro, T. Nakamura, S. Higashi, Y. Kakutani, K. Hyakuna, S. Ito, T. Kokubo, M. Takagi and T. Shibuya, J. Biomed. Mater. Res. 20 (1986) 1295.

    Google Scholar 

  20. T. Kitsugi, T. Nakamura, T. Yamamuro, T. Kokubo, T. Shibuya and T. Takagi, ibid. 21 (1987) 1255.

    Google Scholar 

  21. T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka and T. Yamamuro, J. Mater. Sci.: Mater. Med. 3 (1992) 79.

    Google Scholar 

  22. E. M. Carlisle, Science 167 (1970) 279.

    Google Scholar 

  23. T. Kokubo, J. Non-Cryst. Solids 120 (1990) 138.

    Google Scholar 

  24. H. Takadama, H.-M. Kim, F. Miyajim, T. Kokubo and T. Nakamura, J. Ceram. Soc. Jpn. 108 (2000) 118.

    Google Scholar 

  25. F. Miyaji, Y. Morita, T. Kokubo and T. Nakamura, ibid. 106 (1998) 465.

    Google Scholar 

  26. M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura and T. Yamamuro, J. Am. Ceram. Soc. 77 (1994) 2805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Juhasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhasz, J.A., Best, S.M., Bonfield, W. et al. Apatite-forming ability of glass-ceramic apatite–wollastonite – polyethylene composites: effect of filler content. Journal of Materials Science: Materials in Medicine 14, 489–495 (2003). https://doi.org/10.1023/A:1023499728588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023499728588

Keywords

Navigation