Skip to main content
Log in

Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove that there exists a class of solutions of the nonlinear Vlasov–Poisson equation (VPE) on a circle that converges weakly, as t → ∞, to a stationary homogeneous solution of VPE. This behavior is called, in the linear case, Landau damping. The result is obtained by constructing a suitable scattering problem for the solutions of the Vlasov–Poisson problem. A consequence of this result is that a class of stationary solutions of the Vlasov–Poisson equation is unstable in a weak topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Arnold, Méthodes mathématiques de la mécanique classique (MIR, Moscow, 1993).

    Google Scholar 

  2. C. Bardos and P. Degond, Global existence for Vlasov-Poisson Equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré: Analyse Nonlinéaire 2:101 (1985).

    Google Scholar 

  3. J. Batt, A survey of recent results in the investigation of the Vlasov-Poisson system and question open for further research, in European Workshop on Kinetic Equations April 1996 Granada, Book of Abstracts, pp. 25–29.

  4. J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson system in three dimensions., Ann. Mat. Pat. Pura Appl. CLXIV:133–154 (1993).

    Google Scholar 

  5. E. Caglioti and C. Maffei, Scattering theory: A possible approach to the homogenization problem for the Euler equations, Rend. Mat. 17:445–475 (1997).

    Google Scholar 

  6. P. Degond, Apparition de résonance pour l'equation de Vlasov-Poisson linéarise, C.R. Acad. Sci. Paris Ser. I. Math. 296:969 (1983).

    Google Scholar 

  7. R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation, Transport Theory Stat. Phys. 4:411 (1994).

    Google Scholar 

  8. H. Grad, The many faces of entropy, CPAM 14:323–354 (1961).

    Google Scholar 

  9. D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep. 123:1 (1985).

    Google Scholar 

  10. S. Klainerman, Long-time Behavior of solutions to nonlinear evolution equations, Arch. Rat. Mech. Anal. 78:73 (1982).

    Google Scholar 

  11. S. Klainerman and G. Ponce, Global small amplitude solutions to nonlinear evolution equations, CPAM 36:133 (1983).

    Google Scholar 

  12. R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. Appl. Sci. 19:1409–1413 (1996).

    Google Scholar 

  13. S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Am. Math. Soc. Trans. Ser. 35:351 (1964).

    Google Scholar 

  14. L. Landau and E. Lifshitz, Cinétique physique (MIR Moscow, 1979).

  15. L. Landau, On the vibration of the electronic plasma, J. Phys. USSR 10:25 (1946).

    Google Scholar 

  16. A. Majda, G. Majda, and Y. Zheng, Concentration in the one-dimensional Vlasov-Poisson equations, I: Temporal development and nonunique weak solutions in the single component case, Physica D 268 (1994).

  17. C. Marchioro and M. Pulvirenti, A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, Math. Meth. Appl. Sci 8:284 (1986).

    Google Scholar 

  18. V. P. Maslov and M. V. Fedoryuk, The linear theory of Landau damping, Math. USSR Sbornik 55:437 (1986).

    Google Scholar 

  19. J. Michel and R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law, Commun. Math. Phys. 159:195 (1994).

    Google Scholar 

  20. H. Neunzert, An Introduction to the Nonlinear Boltzmann-Vlasov Equation (Springer, Berlin, 1981).

    Google Scholar 

  21. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson in three dimensions for general initial data, J. Diff. Eqns. 95:281–203 (1992).

    Google Scholar 

  22. B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations, CPDE 21:659–686 (1996).

    Google Scholar 

  23. M. Reed and B. Simon, Methods in Modern Mathematical Physics III Scattering Theory (Academic Press, New York, 1979).

    Google Scholar 

  24. J. Shaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, CPDE 16:1313–1335 (1991).

    Google Scholar 

  25. W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41:110 (1981).

    Google Scholar 

  26. S. Ukai and T. Okabe, On the classical solutions in large in time of the two-dimensional Vlasov-Poisson equation, Osaka J. Math. 15:245–261 (1978).

    Google Scholar 

  27. A. Vlasov, On the kinetic theory of an assembly of particles with collective interaction, Acad. Sci. USSR J. Phys. 9:25 (1945).

    Google Scholar 

  28. Y. Zheng and A. Majda, Existence of global weak solutions to one component Vlasov-Poisson and Fokker-Plank-Poisson systems in one space dimension with initial data of measures, CPAM XLVII:1365 (1994).

    Google Scholar 

  29. M. B. Isichenko, Nonlinear Landau damping in collisionless plasma and inviscid fluids, Phys. Rev. Lett. 78:2369 (1997).

    Google Scholar 

  30. G. Manfredi, Long time behavior of nonlinear Landau damping, Phys. Rev. Lett. 79:2815 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caglioti, E., Maffei, C. Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle. Journal of Statistical Physics 92, 301–323 (1998). https://doi.org/10.1023/A:1023055905124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023055905124

Navigation