Skip to main content
Log in

RNA Amplification in Brain Tissues

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent developments in gene array technologies, specifically cDNA microarray platforms, have made it easier to try to understand the constellation of gene alterations that occur within the CNS. Unlike an organ that is comprised of one principal cell type, the brain contains a multiplicity of both neuronal (e.g., pyramidal neurons, interneurons, and others) and noneuronal (e.g., astrocytes, microglia, oligodendrocytes, and others) populations of cells. An emerging goal of modern molecular neuroscience is to sample gene expression from similar cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subtypes and noneuronal cells. At present, an optimal methodology to assess gene expression is to evaluate single cells, either identified physiologically in living preparations, or by immunocytochemical or histochemical procedures in fixed cells in vitro or in vivo. Unfortunately, the quantity of RNA harvested from a single cell is not sufficient for standard RNA extraction methods. Therefore, exponential polymerase-chain reaction (PCR) based analyses and linear RNA amplifications, including a newly developed terminal continuation (TC) RNA amplification methodology, have been used in combination with single cell microdissection procedures to enable the use of cDNA microarray analysis within individual populations of cells obtained from postmortem brain samples as well as the brains of animal models of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Van Deerlin, V. M. D., Ginsberg, S. D., Lee, V. M.-Y., and Trojanowski, J. Q. 2002. The use of fixed human post mortem brain tissue to study mRNA expression in neurodegenerative diseases: applications of microdissection and mRNA amplification, in Microarrays for the Neurosciences: An Essential Guide, Geschwind, D. H. and Gregg, J. P., editors. Boston, MIT Press. 201-235.

    Google Scholar 

  2. Lehmann, U., Bock, O., Glockner, S., and Kreipe, H. 2000. Quantitative molecular analysis of laser-microdissected paraffinembedded human tissues. Pathobiology 68:202-208.

    Google Scholar 

  3. Lewis, F., Maughan, N. J., Smith, V., Hillan, K., and Quirke, P. 2001. Unlocking the archive-gene expression in paraffinembedded tissue. J. Pathol. 195:66-71.

    Google Scholar 

  4. Ginsberg, S. D. 2001. Gene expression profiling using single cell microdissection combined with cDNA microarrays, in DNA Microarrays: The New Frontier in Gene Discovery and Gene Expression Analysis., Geschwind, D. H., editor. Society for Neuroscience Press, Washington, pp. 61-70.

    Google Scholar 

  5. Ginsberg, S. D., Schmidt, M. L., Crino, P. B., Eberwine, J. H., Lee, V. M.-Y., and Trojanowski, J. Q. 1999. Molecular pathology of Alzheimer's disease and related disorders, in Cerebral Cortex, vol. 14. Neurodegenerative and Age-related Changes in Structure and Function of Cerebral Cortex, Peters, A. and Morrison, J. H., editors. New York, Kluwer Academic/Plenum 603-653.

    Google Scholar 

  6. Colantuoni, C., Purcell, A. E., Bouton, C. M., and Pevsner, J. 2000. High throughput analysis of gene expression in the human brain. J. Neurosci. Res. 59:1-10.

    Google Scholar 

  7. Ginsberg, S. D., Hemby, S. E., Lee, V. M.-Y., Eberwine, J. H., and Trojanowski, J. Q. 2000. Expression profile of transcripts in Alzheimer's disease tangle-bearing CAI neurons. Ann. Neurol. 48:77-87.

    Google Scholar 

  8. Ginsberg, S. D., Crino, P. B., Hemby, S. E., Weingarten, J. A., Lee, V. M.-Y., Eberwine, J. H., and Trojanowski, J. Q. 1999. Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Ann. Neurol. 45:174-181.

    Google Scholar 

  9. Hemby, S. E., Ginsberg, S. D., Brunk, B., Arnold, S. E., Trojanowski, J. Q., and Eberwine, J. H. 2002. Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch. Gen. Psychiatr. 59:631-640.

    Google Scholar 

  10. Hemby, S. E., Trojanowski, J. Q., and Ginsberg, S. D. 2002. Neuron specific age related decreases in dopamine receptor subtype mRNAs. J. Comp. Neurol., in press

  11. Mufson, E. J., Counts, S. E., and Ginsberg, S. D. 2002. Single cell gene expression profiles of nucleus basalis cholinergic neurons in Alzheimer's disease. Neurochem. Res. 27:1035-1048.

    Google Scholar 

  12. Chow, N., Cox, C., Callahan, L. M., Weimer, J. M., Guo, L., and Coleman, P. D. 1998. Expression profiles of multiple genes in single neurons of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 95:9620-9625.

    Google Scholar 

  13. von Bertalanffy, L. and Bickis, I. 1956. Identification of cytoplasmic basophilia (ribonucleic acid) by fluorescence microscopy. J. Histochem. Cytochem. 4:481-493.

    Google Scholar 

  14. Mikel, U. V. and Becker R. L., Jr. 1991. A comparative study of quantitative stains for DNA in image cytometry. Analyt. Quant. Cytol. Histol. 13:253-260.

    Google Scholar 

  15. Mai, J. K., Schmidt-Kastner, R., and Tefett, H.-B. 1984. Use of acridine orange for histologic analysis of the central nervous system. J. Histochem. Cytochem. 32:97-104.

    Google Scholar 

  16. Zoccarato, F., Cavallini, L., and Alexandre, A. 1999. The pHsensitive dye acridine orange as a tool to monitor exocytosis/ endocytosis in synaptosomes. J. Neurochem. 72:625-633.

    Google Scholar 

  17. Ginsberg, S. D., Galvin, J. E., Chiu, T.-S., Lee, V. M.-Y., Masliah, E., and Trojanowski, J. Q. 1998. RNA sequestration to pathological lesions of neurodegenerative disorders. Acta Neuropathol. 96:487-494.

    Google Scholar 

  18. Ginsberg, S. D., Crino, P. B., Lee, V. M.-Y., Eberwine, J. H., and Trojanowski, J. Q. 1997. Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann. Neurol. 41:200-209.

    Google Scholar 

  19. Luo, L., Salunga, R. C., Guo, H., Bittner, A., Joy, K. C., Galindo, J. E., Xiao, H., Rogers, K. E., Wan, J. S., Jackson, M. R., and Erlander, M. G. 1999. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5: 117-122.

    Google Scholar 

  20. Zhao, X., Lein, E. S., He, A., Smith, S. C., Aston, C., and Gage, F. H. 2001. Transcriptional profiling reveals strict boundaries between hippocampal subregions. J. Comp. Neurol. 441:187-196.

    Google Scholar 

  21. Loring, J. F., Wen, X., Lee, J. M., Seilhamer, J., and Somogyi, R. 2001. A gene expression profile of Alzheimer's disease. DNA Cell. Biol. 20:683-695.

    Google Scholar 

  22. Malaspina, A., Kaushik, N., and de Belleroche, J. 2001. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem. 77:132-145.

    Google Scholar 

  23. Carmel, J. B., Galante, A., Soteropoulos, P., Tolias, P., Recce, M., Young, W., and Hart, R. P. 2001. Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol. Genomics 7:201-213.

    Google Scholar 

  24. Yoshihara, T., Ishigaki, S., Yamamoto, M., Liang, Y., Niwa, J., Takeuchi, H., Doyu, M., and Sobue, G. 2002. Differential expression of inflammation-and apoptosis-related genes in spinal cords of a mutant SODI transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 80:158-167.

    Google Scholar 

  25. Mimmack, M. L., Ryan, M., Baba, H., Navarro-Ruiz, J., Iritani, S., Faull, R. L., McKenna, P. J., Jones, P. B., Arai, H., Starkey, M., Emson, P. C., and Bahn, S. 2002. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc. Natl. Acad. Sci. USA 99:4680-4685.

    Google Scholar 

  26. Middleton, F. A., Mirnics, K., Pierri, J. N., Lewis, D. A., and Levitt, P. 2002. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22:2718-2729.

    Google Scholar 

  27. Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., Haroutunian, V., and Feinberg, A. A. 2001. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98:4746-4751.

    Google Scholar 

  28. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., and Levitt, P. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53-67.

    Google Scholar 

  29. Wang, J. F., Bown, C. D., Chen, B., and Young, L. T. 2001. Identification of mood stabilizer-regulated genes by differential-display PCR. Int. J. Neuropsychopharmacol. 4:65-74.

    Google Scholar 

  30. Dougherty, J. D. and Geschwind, D. H. 2002. Subtraction-coupled custom microarray analysis for gene discovery and gene expression studies in the CNS. Chem. Senses 27:293-298.

    Google Scholar 

  31. Kafert, S., Krauter, J., Ganser, A., and Eder, M. 1999. Differ-ential quantitation of alternatively spliced messenger RNAs using isoform-specific real-time RT-PCR. Anal. Biochem. 269:210-213.

    Google Scholar 

  32. Wang, H., Xu, L., Venkatachalam, S., Trzaskos, J. M., Friedman, S. M., Feuerstein, G. Z., and Wang, X. 2001. Differential regulation of IL-1beta and TNF-alpha RNA expression by MEKI inhibitor after focal cerebral ischemia in mice. Biochem. Biophys. Res. Commun. 286:869-874.

    Google Scholar 

  33. Wang, H., Zhan, Y., Xu, L., Feuerstein, G. Z., and Wang, X. 2001. Use of suppression subtractive hybridization for differential gene expression in stoke: discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32:1020-1027.

    Google Scholar 

  34. Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., and Liotta, L. A. 1997. Laser capture microdissection: molecular analysis of tissue. Science 278:1481-1483.

    Google Scholar 

  35. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. 1996. Laser capture microdissection. Science 274:998-1001.

    Google Scholar 

  36. Fend, F., Emmert-Buck, M. R., Chuaqui, R., Cole, K., Lee, J., Liotta, L. A., and Raffeld, M. 1999. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154:61-66.

    Google Scholar 

  37. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., and Maronpot, R. R. 1999. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog. 25:86-91.

    Google Scholar 

  38. Simone, N. L., Remaley, A. T., Charboneau, L., Petricoin, E. F., III, Glickman, J. W., Emmert-Buck, M. R., Fleisher, T. A., and Liotta, L. A. 2000. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156:445-452.

    Google Scholar 

  39. Suarez-Quian, C. A., Goldstein, S. R., Pohida, T., Smith, P. D., Peterson, J. I., Wellner, E., Ghany, M., and Bonner, R. F. 1999. Laser capture microdissection of single cells from complex tissues. Biotechniques 26:328-335.

    Google Scholar 

  40. Che, S. and Ginsberg, S. D. 2002. Amplification of transcripts using terminal continuation. Submitted for publication.

  41. Crino, P. B., Khodakhah, K., Becker, K., Ginsberg, S. D., Hemby, S., and Eberwine, J. H. 1998. Presence and phosphorylation of transcription factors in dendrites. Proc. Natl. Acad. Sci. USA 95:2313-2318.

    Google Scholar 

  42. Brail, L. H., Jang, A., Billia, F., Iscove, N. N., Klamut, H. J., and Hill, R. P. 1999. Gene expression in individual cells: analysis using global single cell reverse transcription polymerase chain reaction (GSC RT-PCR). Mutat. Res. 406:45-54.

    Google Scholar 

  43. Van Deerlin, V. M. D., Ginsberg, S. D., Lee, V. M.-Y., and Trojanowski, J. Q. 2000. Fixed post mortem brain tissue for mRNA expression analysis in neurodegenerative diseases, in DNA Microarrays: The New Frontier in Gene Discovery and Gene Expression Analysis, Geschwind, D. H. Editor. Society of Neuroscience: Washington, D.C. 118-128.

    Google Scholar 

  44. Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R., Zettel, M., and Coleman, P. 1992. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89:3010-3014.

    Google Scholar 

  45. Eberwine, J., Kacharmina, J. E., Andrews, C., Miyashiro, K., McIntosh, T., Becker, K., Barrett, T., Hinkle, D., Dent, G., and Marciano, P. 2001. mRNA expression analysis of tissue sections and single cells. J. Neurosci. 21:8310-8314.

    Google Scholar 

  46. Sambrook, J., Fritsch, E., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Second edition. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press.

    Google Scholar 

  47. Luzzi, V., Holtschlag, V., and Watson, M. A. 2001. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am. J. Pathol. 158:2005-2010.

    Google Scholar 

  48. Ginsberg, S. D. 2001. cDNA microarray analysis of mouse dentate gyrus granule cells suggests excitotoxicity as a mechanism of degeneration following perforant path lesions. Proc. Soc. Neurosci. 27:94.15.

    Google Scholar 

  49. Ginsberg, S. D., Martin, L. J., and Rothstein, J. D. 1995. Regional deafferentation down-regulates subtypes of glutamate transporter proteins. J. Neurochem. 65:2800-2803.

    Google Scholar 

  50. Ginsberg, S. D., Rothstein, J. D., Price, D. L., and Martin, L. J. 1996. Fimbria-fornix transections selectively down-regulate subtypes of glutamate transporter and glutamate receptor proteins in septum and hippocampus. J. Neurochem. 67:1208-1216.

    Google Scholar 

  51. Ginsberg, S. D. and Martin, L. J. 2002. Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J. Neurotrauma. 19:99-109.

    Google Scholar 

  52. Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W., and Trojanowski, J. Q. 1987. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J. Neurosci. 7:3474-3488.

    Google Scholar 

  53. Ginsberg, S. D. 2002. High quality mRNA extraction with KingFisher for molecular fingerprinting. Focus 1:5.

    Google Scholar 

  54. Ginsberg, S. D. 2002. Single cell cDNA microarray analysis of mouse dentate gyrus granule cells following unilateral perforant path lesions. Proc. Soc. Neurosci. 28:686.13

    Google Scholar 

  55. Brown, P. O. and Botstein, D. 1999. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21 Suppl:33-37.

    Google Scholar 

  56. Eisen, M. B. and Brown, P. O. 1999. DNA arrays for analysis of gene expression. Methods Enzymol. 303:179-205.

    Google Scholar 

  57. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., and Brown, E. L. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14:1675-1680.

    Google Scholar 

  58. Serafini, T. 1999. Of neurons and gene chips. Curr. Opin. Neu-robiol. 9:641-644.

    Google Scholar 

  59. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, F. M. 2000. High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18:457-459.

    Google Scholar 

  60. SMART technology overview. Clontechniques, 2002 Jan: 22-23.

  61. Antequera, F. and Bird, A. 1993. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90: 11995-11999.

    Google Scholar 

  62. Bird, A. P. 1987. CpG islands as gene markers in the verterbrate nucleus. Trends Genet. 3:342-347.

    Google Scholar 

  63. Cross, S. H., Clark, V. H., and Bird, A. P. 1999. Isolation of CpG islands from large genomic clones. Nucleic Acids Res. 27:2099-2107.

    Google Scholar 

  64. Kadkol, S. S., Gage, W. R., and Pasternack, G. R. 1999. In situ hybridization-theory and practice. Mol. Diagn. 4:169-183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsberg, S.D., Che, S. RNA Amplification in Brain Tissues. Neurochem Res 27, 981–992 (2002). https://doi.org/10.1023/A:1020944502581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020944502581

Navigation