Skip to main content
Log in

Review Synthesis of conducting nanowires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Work reported on the synthesis of nanowires of different metals/alloys and semiconductors respectively in recent years is reviewed. The methods used mostly belong to one of the following categories: chemical, electrodeposition, physical and filling of carbon nanotubes. Electrical properties investigated for some of these nanowires indicate quantum mechanical effects to be present. Nanodevice fabrication using doped semiconducting nanowires has also been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Heath, Science 270 (1995) 1315.

    Google Scholar 

  2. A. P. Alivisatos, ibid. 271 (1996) 933.

    Google Scholar 

  3. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. G. Osifchin, ibid. 273 (1996) 1690.

    Google Scholar 

  4. R. Landaner, J. Phys.: Condens. Mater 1 (1989) 8099.

    Google Scholar 

  5. Y. Imry, in “Nanostructures and Mesoscopic Systems,” edited by W. P. Kirk and M. A. Reed (Academic, New York, 1992) p. 11.

  6. A. J. Cox, J. G. Louderback and L. A. Bloomfield, Phys. Rev. Lett. 71(1993) 923.

    Google Scholar 

  7. R. F. Pease, in “Nanostructures and Mesoscopic Systems,” edited by W. P. Kirk and M. A. Reed (Academic, New York, 1992) p. 37.

  8. H. J. Blythe, V. M. Fedosynk, O. I. Kasyutich and W. Schwarzacher, J. Magn. Magn. Mater. 208 (2000) 251.

    Google Scholar 

  9. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee and Y. W. Chung, J. Mater. Res. 14 (1999) 4503.

    Google Scholar 

  10. J. R. Heath and F. K. LeGoues, Chem. Phys. Lett. 208 (1993) 263.

    Google Scholar 

  11. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis and C. B. Prater, Science 263 (1994) 800.

    Google Scholar 

  12. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, ibid. 270 (1995) 1791.

    Google Scholar 

  13. J. D. Holmes, K. P. Johnstom, R. C. Doty and B. A. Korgel, ibid. 287 (2000) 1417.

    Google Scholar 

  14. Y.-J. Han, J. M. Kim and G. D. Stucky, Chem. Mater. 12 (2000) 2068.

    Google Scholar 

  15. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, ibid. 279 (1998) 548.

    Google Scholar 

  16. S. Wang and S. Yang, Chem. Phys. Lett. 322 (2000) 567.

    Google Scholar 

  17. G. W. Meng, Z. Cui, L. D. Zhang and F. Phillipp, J. Cryst. Growth 209 (2000) 801.

    Google Scholar 

  18. J. Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu and J. X. Wu, J. Phys. Chem. B 104 (2000) 5251.

    Google Scholar 

  19. B. Gates, Y. Yin and Y. Xia, J. Am. Chem. Soc. 122 (2000) 12582.

    Google Scholar 

  20. N. R. B. Coleman, M. A. Morris, T. R. Spalding and J. D. Holmes, ibid. 123 (2001) 187.

    Google Scholar 

  21. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia and Y. Qian, Adv. Mater. 12 (2000) 1348.

    Google Scholar 

  22. T. Bjornholm, T. Hassenkam, D. R. Greve, R. D. McCullough, M. Jayaraman, S. M. Savoy, C. E. Jones and J. T. McDevitt, ibid. 11 (1999) 1218.

    Google Scholar 

  23. L. Sun, P. C. Searson and C. L. Chien, Appl. Phys. Lett. 74 (1999) 2803.

    Google Scholar 

  24. P. R. Evans, G. Yi and W. Schwarzacher, ibid. 76 (2000) 481.

    Google Scholar 

  25. G. Fasol and K. G. Ruge, ibid. 70 (1997) 2467.

    Google Scholar 

  26. D. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, J. Phys. Chem. B 104 (2000) 5061.

    Google Scholar 

  27. S.-J. Choi and S.-M. Park, Adv. Mater. 12 (2000) 1547.

    Google Scholar 

  28. S. Bhattacharyya, S. K. Saha and D. Chakravorty, Appl. Phys. Lett. 76 (2000) 3896.

    Google Scholar 

  29. Idem., ibid. 77 (2000) 3770.

  30. A. Dan and D. Chakravorty, unpublished.

  31. H. Cao, Z. Xu, H. Sang, D. Sheng and C. Tie, Adv. Mater. 13 (2001) 121.

    Google Scholar 

  32. S. A. Sapp, B. B. Lakhsmi and C. R. Martin, ibid. 11 (1999) 402.

    Google Scholar 

  33. H. X. He, C. Z. Li and N. J. Tao, Appl. Phys. Lett. 78 (2001) 811.

    Google Scholar 

  34. Y. Kondo and K. Takayanagi, Science 289 (2000) 606.

    Google Scholar 

  35. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng, Chem. Phys. Lett. 303 (1999) 311.

    Google Scholar 

  36. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J.J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou and Q. S. Feng, Appl. Phys. Lett. 72 (1998) 3458.

    Google Scholar 

  37. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xiand S. Q. Feng, Chem. Phys. Lett. 323 (2000) 224.

    Google Scholar 

  38. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee and S. T. Lee, ibid. 327 (2000) 263.

    Google Scholar 

  39. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Adv. Mater. 12 (2000) 746.

    Google Scholar 

  40. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 72 (1998) 1835.

    Google Scholar 

  41. Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee and S. T. Lee, Chem. Phys. Lett. 314 (1999) 16.

    Google Scholar 

  42. X. Duan and C. M. Lieber, Adv. Mater. 12 (2000) 298.

    Google Scholar 

  43. C. H. Liang, G. W. Meng, L. D. Zhang, N. F. Shen and X. Y. Zhang, J. Cryst. Growth 218 (2000) 136.

    Google Scholar 

  44. A. K. Sinha, D. W. Hwang and L.-P. Hwang, Chem. Phys. Lett. 332 (2000) 455.

    Google Scholar 

  45. C. Kiang, J. Choi, T. Tran and A. Bacher, J. Phys. Chem. B 103 (1999) 7449.

    Google Scholar 

  46. A. Rubio, J. L. Corkill and M. L. Cohen, Phys. Rev. B 53 (1996) 4023.

    Google Scholar 

  47. N. G. Chopra et. al., Science 269 (1995) 966.

    Google Scholar 

  48. W. Han, S. Fan, Q. Li and Y. Hu, Science 277 (1997) 1287.

    Google Scholar 

  49. A. D. Berry, R. J. Tonucci and M. Fatemi, Appl. Phys. Lett. 69 (1996) 2846.

    Google Scholar 

  50. A. Bezryadin, C. N. Lau and M. Tinkham, Nature 404 (2000) 971.

    Google Scholar 

  51. D. N. Davydov, J. Haruyama, D. Routkevitch, B. W. Statt, D. Ellis, M. Moskovits and J. M. Xu, Phys. Rev. B 57 (1998) 13550.

    Google Scholar 

  52. Y. V. Nazarov, Sov. Phys. JETP 68 (1989) 561.

    Google Scholar 

  53. Idem., JETP Lett. 49 (1989) 126.

    Google Scholar 

  54. D. Natelson, R. L. Willett, K. W. West and L. N. Pfeiffer, Solid. State. Commun. 115 (2000) 269.

    Google Scholar 

  55. S. Kanjanachuchai, T. J. Thornton, J. M. FernÁndez and H. Ahmed, Semicond. Sci. Technol. 16 (2001) 72.

    Google Scholar 

  56. S.-W. Chung, J.-Y. Yu and J. R. Heath, Appl. Phys. Lett. 76 (2000) 2068.

    Google Scholar 

  57. F. D. M. Haldane, J. Phys. C: Solid State Phys. 14 (1981) 2585.

    Google Scholar 

  58. H. J. Schultz, Phys. Rev. Lett. 71 (1993) 1864.

    Google Scholar 

  59. S. M. Girrin, L. I. Glazman, M. Jonson, D. R. Penn and M. D. Stiles, Phys. Rev. Lett. 64 (1990) 3183.

    Google Scholar 

  60. K. A. Matveev, D. Yue and L. I. Glazman, ibid. 71 (1993) 3351.

    Google Scholar 

  61. S. V. Z-Zotov, Y. A. Kumzerov, Y. A. Firsov and P. Monceau, J. Phys: Condens. Mater. 12 (2000) L303.

    Google Scholar 

  62. V. L. Gurevich, V. B. Pevzner and E. W. Fenton, ibid. 10 (1998) 2551.

    Google Scholar 

  63. J.-Y. Yu, S.-W. Chung and J. R. Heath, J. Phys. Chem. B 104 (2000) 11864.

    Google Scholar 

  64. C. Z. Li, A. Bogozi, W. Huang and N. J. Tao, Nanotechnology 10 (1999) 221.

    Google Scholar 

  65. L. Pescini, A. Tilke, R. H. Blick, H. Lorentz, J. P. Kotthaus, W. Eberhardt and D. Kern, ibid. 10 (1999) 418.

    Google Scholar 

  66. Y. Cui, X. Duan, J. Hu and C. M. Lieber, J. Phys. Chem. B 104 (2000) 5213.

    Google Scholar 

  67. Y.-M. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus and J. P. Jeremans, Appl. Phys. Lett. 76 (2000) 3944.

    Google Scholar 

  68. K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lu and S. T. Lu, ibid. 75 (1999) 2918.

    Google Scholar 

  69. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119 (1928) 173.

    Google Scholar 

  70. J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth and M. Burghard, Adv. Mater. 12 (2000) 420.

    Google Scholar 

  71. A. M. Craats, J. M. Warman, K. MÜllen, Y. Geerts and J. D. Brand, Adv. Mater. 10 (1998) 36.

    Google Scholar 

  72. T. Valet and A. Fert, Phys. Rev. B 48 (1993) 7099.

    Google Scholar 

  73. X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409 (2001) 66.

    Google Scholar 

  74. Y. Huang, X. Duan, Y. Cui, L. J. Luahon, K.-H. Kim and C. M. Lieber, Science 294 (2001) 1313.

    Google Scholar 

  75. C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin and M. Tinkham, Phys. Rev. Lett. 87 (2001) 217003.

    Google Scholar 

  76. G. Gu, M. Burghard, G. T. Kim, G. S. Dusberg, P. H. Chiu, V. Krstic, S. Roth and W. Q. Han, J. Appl. Phys. 40 (2001) 5747.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Dan, A. & Chakravorty, D. Review Synthesis of conducting nanowires. Journal of Materials Science 37, 4261–4271 (2002). https://doi.org/10.1023/A:1020663731437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020663731437

Keywords

Navigation