Skip to main content
Log in

Electromagnetic Signal Processing and Noncommutative Tomography

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A generic electromagnetic signal described by Maxwell equations both in vacuum and media is considered in the tomographic representation. The Ville–Wigner phase-space representation of the electromagnetic field is also discussed. Relations between different representations of the electromagnetic signal are elucidated. The connection of the Fourier analysis of the electromagnetic signal and other mathematical approaches like the Radon transform of the analytic signal is presented. The distinguishing property of the tomogram to coincide with the probability density of a random variable considered in a reference frame in the signal's phase space is pointed out. The entropy of the signal related to the probability density is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).

  2. L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. J. B. J. Fourier, Théorie Analytique de la Chaleur, in: G. Darbous (ed.), Oeuvres de Fourier, Gauthiers-Villars, Paris (1888), Tome premier. K. B. Howell, “Fourier transforms,” in: A. D. Poularikas (ed.), The Transforms and Applications Handbook, CRC Press & IEEE Press, Boca Raton, Florida (1996), p. 95.

    Google Scholar 

  4. K.-B. Wolf, Integral Transforms in Science and Engineering, Plenum Press, New York (1979).

    Google Scholar 

  5. R. K. Martinet, J. Morlet, and A. Grossmann, “Analysis of sound patterns through wavelet transforms,” Int. J. Pattern Recogn. Artificial Intellig., 1, No. 2, 273 (1987). I. Daubechies, “The wavelet transform: time-frequency localization and signal analysis,” IEEE Trans. Inform. Theory., 36, No. 5, 961 (1990). J. M. Combes, A. Grossmann, and Ph. Tchamitchian (eds.), Wavelets, Springer, Berlin (1990), 2nd edition. C. K. Chui (ed.), Wavelets: A Tutorial Theory and Applications, Academic Press, Boston (1992), Vol. 2. Y. Sheng. D. Roberge, and H. Szu, “Optical wavelet transform,” Opt. Eng., 31, 1840 (1992). D. Han, Y. S. Kim, and M. E. Noz, “Wavelets, windows, and photons,” Phys. Lett. A, 205, 299 (1995). I. M. Dremin, “Wavelets and their uses,” Physics-Uspekhi, 44, 447 (2001).

    Google Scholar 

  6. A. D. Poularikas (ed.), The Transforms and Applications Handbook, CRC Press & IEEE Press, Boca Raton, Florida (1996).

    Google Scholar 

  7. J. Ville, “Théorie et applications de la notion de signal analytique”, Cables et Transmission, 2, 61 (1948).

    Google Scholar 

  8. E. Wigner, “On the quantum corrections for thermodynamic equilibrium,” Phys. Rev., 40, 749 (1932).

    Google Scholar 

  9. J. Radon, “Ñber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissenschaften, Leipzig, Mathematische-Physikalische Klasse, 69 (1917), S. 262.

    Google Scholar 

  10. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography application to squeezed states and the vacuum,” Phys. Rev. Lett., 70, 1244 (1993).

    Google Scholar 

  11. J. Bertrand and P. Bertrand, “A tomographic approach to Wigner's function,” Found. Phys., 17, 397 (1987).

    Google Scholar 

  12. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A, 40, 2847 (1989).

    Google Scholar 

  13. S. Mancini, V. I. Man'ko, and P. Tombesi, “Wigner function and probability distribution for shifted and squeezed quadratures,” Quantum Semiclass. Opt., 7, 615 (1995).

    Google Scholar 

  14. G. M. D'Ariano, S. Mancini, V. I. Man'ko, and P. Tombesi, “Reconstructing the density operator by using generalized field quadratures,” Quantum Semiclass. Opt., 8, 1017 (1996).

    Google Scholar 

  15. V. I. Man'ko and R. V. Mendes, “Noncommutative time-frequency tomography of analytic signals,” SISSA-LANL E-print Physics/9712022 Data Analysis, Statistics, and Probability; “Noncommutative time-frequency tomography,” Phys. Lett. A, 263, 53 (1999).

    Google Scholar 

  16. M. A. Man'ko, “Fractional Fourier transform in information processing, tomography of optical signal, and Green function of harmonic oscillator,” J. Russ. Laser Res., 20, 226 (1999); “Quasidistributions, tomography, and fractional Fourier transform in signal analysis,” J. Russ. Laser Res., 21, 411 (2000); “Optical tomography approach in signal analysis,” SISSA-LANL E-print quant-ph/9906010; in: D. Han, Y. S. Kim, and S. Solimeno (eds.), Sixth International Conference on Squeezed States and Uncertainty Relations (Naples, Italy, May 1999), NASA Conference Proceedings in CD, 2000-209899, Goddard Space Flight Center, Greenbelt, Maryland (2000); “Fractional Fourier analysis and quantum propagators,” in: H.-D. Doebner, V. K. Dobrev, J.-D. Hennig, and W. Luecke (eds.), Proceedings of the International Symposium ‘Quantum Theory and Symmetries' (Goslar, Germany, July 1999), World Scientific, Singapore (2000), p. 226.

    Google Scholar 

  17. M. A. Man'ko, V. I. Man'ko, and R. V. Mendes, “Tomograms and other transforms: a unified view,” J. Phys. A: Math. Gen., 34, 8321 (2001). M. A. Man'ko, “Tomograms, wavelets, and quasidistributions in the geometric picture,” J. Russ. Laser Res., 22, 505 (2001); “Tomography of an analytic signal,” in: D. Han, Y. S. Kim, B. E. A. Saleh, A. V. Sergienko, and M C. Teich (eds.), Online Proceedings of the 7th International Conference on Squeezed States and Uncertainty Relations (Boston, USA, June 2001) [http://www.physics.umd.edu/robot; Click Proceedings (2002)]; “Wavelets and transforms in information processing,” in: E. Kapu?cik and A. Horzela (eds.), Proceedings of the Second International Symposium on Quantum Theory and Symmetries (Krakow, Poland, July 2001), World Scientific, Singapore (2002), p. 473.

    Google Scholar 

  18. M. A. Man'ko, “Quantum-tomography method in information processing,” in: P. Tombesi and O. Hirota (eds.), Quantum Communication, Computing, and Measurement 3. Proceedings of the Fifth International Conference on Quantum Communication, Measurement, and Computing (Capri, Italy, July 2000), Kluwer Academic/Plenum Publishers, New York (2001), p. 147; “Noncommutative tomography of analytic signal and entanglement in the probability representation of quantum mechanics,” Talk at the Second Bielefeld Workshop on Quantum Information and Complexity (Bielefeld, Germany, October 2000); Eprint No. 2000/006 of the Workshop “The Sciences of Complexity: From Mathematics to Technology to a Sustainable World” (Center for Interdisciplinary Research, Bielefeld, Germany, 1 October 2000-31 August 2001) [http://www.unibielefeld.de/ZIF/complexity/publications.html]; “Noncommutative tomography of an analytic signal and entanglement in the probability representation of quantum mechanics,” J. Russ. Laser Res., 22, 168 (2001).

    Google Scholar 

  19. M. A. Man'ko, V. I. Man'ko, and R. V. Mendes, “Quantum computation by quantum-like systems,” Phys. Lett. A, 288, 132 (2001); Eprint quant-ph/0104023; Eprint No. 2001/044 of the Workshop “The Sciences of Complexity: From Mathematics to Technology to a Sustainable World” (Center for Interdisciplinary Research, Bielefeld, Germany, 1 October 2000-31 August 2001) [http://www.unibielefeld.de/ZIF/complexity/publications.html].

    Google Scholar 

  20. R. Fedele and V. I. Man'ko, “Phase-space electronic-ray description for charged-particle-beam transport. Quantumlike corrections versus the classical picture,” Phys. Scr. T, 75, 283 (1998); “Role of the semiclassical description in the quantumlike theory of light rays,” Phys. Rev. E, 60, 6042 (1999). R. Fedele, M. A. Man'ko, and V. I. Man'ko, “Wave-optics applications in charged-particle-beam transport.” J. Russ. Laser Res., 21, 1 (2000). R. Fedele and P. K. Shukla (eds.), Quantumlike Models and Coherent Effects, World Scientific, Singapore (1995). S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.), New Perspectives in the Physics of Mesoscopic Systems. Quantumlike Descriptions and Macroscopic Coherent Phenomena, World Scientific, Singapore (1997). M. A. Man'ko, “Quantumlike models in beam physics and signal analysis,” in: P. Chen (ed.), Proceedings of the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (Capri, Italy, October 2000), World Scientific, Singapore (2001), p. 578; Eprint No. 2000/007 of the Workshop “The Sciences of Complexity: From Mathematics to Technology to a Sustainable World” (Center for Interdisciplinary Research, Bielefeld, Germany, 1 October 2000-31 August 2001) [http://www.unibielefeld.de/ZIF/complexity/publications.html]; “Beam optics and signal analysis in a quantumlike approach,” J. Russ. Laser Res., 22, 48 (2001).

    Google Scholar 

  21. M. A. Leontovich, “A method of solving the problem of electromagnetic-wave propagation along the Earth's surface,” Izv. Akad. Nauk SSSR, 8, 16 (1944). V. A. Fock and M. A. Leontovich, “Solution of the problem of propagation of electromagnetic waves along the Earth's surface by the method of parabolic equation,” Zh. Éksp. Teor. Fiz., 16, 557 (1946).

    Google Scholar 

  22. R. Fedele, M. A. Man'ko, and V. I. Man'ko, “Charged-particle beam propagator in wave electron optics: phase-space and tomographic pictures,” J. Opt. Soc. Am. A, 17, 2506 (2000).

    Google Scholar 

  23. I. A. Malkin and V. I. Man'ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  24. V. V. Dodonov and V. I Man'ko, Invariants and Evolution of Nonstationary Quantum Systems, Proceedings of the P. N. Lebedev Physical Institute, Nova Science, New York (1989), Vol. 183.

    Google Scholar 

  25. V. V. Dodonov and O. V. Man'ko, “Universal invariants of quantum-mechanical and optical systems,” J. Opt. Soc. Am. A, 17, 2403 (2000).

    Google Scholar 

  26. V. V. Dodonov and O. V. Man'ko, “Universal invariants in quantum mechanics and physics of optical and particle beams,” J. Russ. Laser Res., 21, 438 (2000).

    Google Scholar 

  27. L. Landau, “Das Dämpfungsproblem in der Wellenmechanik,” Z. Phys., 45, 430 (1927).

    Google Scholar 

  28. J. von Neumann, Mathematische Grundlagen der Quantummechanik, Springer, Berlin (1932); Göttingenische Nachrichten, 11 (Nov. 1927), S. 245.

    Google Scholar 

  29. S. Chountasis, A. Vourdas, and C. Bendjabalah, ”Fractional Fourier transform on the phase-space plane,” in: Ali Mohammad-Djafari (ed.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering (Gif-sur-Ivette, France, July 2000), AIP Conference Proceedings, Melville, New York (2001), Vol. 568, p. 468.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man'ko, M.A. Electromagnetic Signal Processing and Noncommutative Tomography. Journal of Russian Laser Research 23, 433–448 (2002). https://doi.org/10.1023/A:1020498519826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020498519826

Navigation