Skip to main content
Log in

The application of genetic approaches for investigations of mycorrhizal symbioses

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Genetic analyses of mycorrhizal symbioses have been far less common to date than molecular biological investigations. This review aims to address the problem that genetic research approaches are some of the least familiar to non specialists by providing some detailed explanations of the requirements and processes involved, including concepts of genetic variation and genetic mapping. Each section includes examples of research progress which is restricted to studies of arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) symbioses. Most such research has focussed on AM hosts or EcM fungi. For AM hosts, some early work on natural genetic variation has not been exploited yet, but new research with barley and clover will enable genetic mapping of mycorrhizal associated QTLs for the first time. EcM fungal studies have shown a genetic basis for mycorrhizal capacity and quantitative genetic differences in mycorrhizal capacity. Some recent work with EcM hosts has begun genetic mapping of QTLs associated with mycorrhizal status. Most AM genetic research has focussed on analysis of nodulation-defective mutants for their AM host status. Map-based cloning and characterisation of the first genes shown by these analyses to be essential for establishment of both nodulation and mycorrhizal symbioses are anticipated shortly. Comparisons with molecular and genetic research on plant disease resistance genes and signalling pathways may prove useful as those studies are more advanced and underlying biochemical and evolutionary relationships are likely to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker S J, Stummer B, Gao L, Dispain I, O'Connor P J and Smith S E 1998a A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J. 15, 791-797.

    Google Scholar 

  • Barker S J, Tagu D and Delp G 1998b Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol. 116, 1201-1207.

    Google Scholar 

  • Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J and Parniske M 2000 The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol. Plant Micr. Int. 13, 1109-1120.

    Google Scholar 

  • Bradshaw H D Jr, Ceulemans R, Davis J and Stettler R 2000 Emerging model systems in plant biology: poplar (Populus) as amodel forest tree. J. Plant Growth Regul. 19, 306-313.

    Google Scholar 

  • Bradshaw H D Jr, Villar M, Watson B D, Otto K G, Stewart S and Stettler R 1994 Molecular genetics of growth and development of Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS and RAPD markers. Theor. Appl. Genet. 89, 167-178.

    Google Scholar 

  • Carnero-Diaz E, Martin F and Tagu D 1996 Eucalypt ?-tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system. Plant Mol. Biol. 31, 905-910.

    Google Scholar 

  • Cavagnaro T R, Gao L-L, Smith F A and Smith S E 2001 Morphology of arbuscular mycorrhizal is influenced by fungal identity. New Phytol. 151, 469-475.

    Google Scholar 

  • Cervera M T, Gusmão J, Steenackers M, Peleman J, Storme V, Vanden Broeck A, Van Montagu M and Boerjan W 1996 Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor. Appl. Genet. 93, 733-737.

    Google Scholar 

  • Cline M L and Reid C P P 1982 Seed sources and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. Forest Sci. 28, 237-250.

    Google Scholar 

  • Debaud J C, Gay G, Prevost A, Lei J and Dexheimer J 1988 Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol. 108, 323-328.

    Google Scholar 

  • Dixon R K, Garrett H E and Stelzer H E 1987 Growth and ectomycorrhizal development of loblolly pine progenies inoculated with three isolates of Pisolithus tinctorius. Silvae Genetica 36, 240-245.

    Google Scholar 

  • Doudrick R L, Raffle V L, Nelson C D and Furnier G R 1995 Genetic analysis of homokaryons from a basidiome of Laccaria bicolor using random amplified polymorphic DNA (RAPD) markers. Mycol. Res. 99, 1361-1366.

    Google Scholar 

  • Douds D D Jr and Millner P A 1999 Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric. Ecosys. Env. 74, 77-93.

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V and Gianinazzi S 1989 First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215-222.

    Google Scholar 

  • Eason W R, Webb K J, Michaelson-Yeates T P T, Abberton M T, Griffith G W, Culshaw C M, Hooker J E and Dhanoa M S 2001 Effect of genotype of Trifolium repens on mycorrhizal symbiosis with Glomus mosseae. J. Agric. Sci. 137, 27-36.

    Google Scholar 

  • Ellis J, Dodds P and Pryor T 2000 The generation of plant disease resistance gene specificities. Trends Plant Sci. 5, 373-379.

    Google Scholar 

  • Faivre-Rampant P, Bastien C, Augustin S, Breton V, Delpalnque A, Mourier M C, Kertadikara A, Laurans F, Lefèvre F, Lesage M C, Menard M, Pinon J, Saintagne C, Valadon A and Villar M 1999 Locating Genomic Regions Involved in Pest Resistance in Poplars. Proceedings of the International Poplar Symposium II (IPSII), IUFRO, Orléans, France, p 31.

    Google Scholar 

  • Feys B J and Parker J E 2000 Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455.

    Google Scholar 

  • Gao L-L, Delp G and Smith S E 2001 Colonization patterns in a mycorrhizal-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol. 151, 477-491.

    Google Scholar 

  • Gay G and Debaud J C 1987 Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter-and intraspecific variability in homo-and dikaryotic mycelia. Appl. Microbiol. Biotechnol. 26, 141-146.

    Google Scholar 

  • Gianinazzi-Pearson V 1984 Host-fungus specificity, recognition and compatibility in mycorrhizae. In Genes Involved in Microbe-Plant Interactions. Eds. D P S Verma and Th Hohn. pp 225-253. Springer-Verlag, Wien.

    Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8, 1871-1883.

    Google Scholar 

  • Gion J M, Rech P, Grima-Pettenati J, Verhaegen D and Plomion C 2000 Mapping candidate genes in Eucalytus with emphasis on lignification genes. Molec. Breeding 6, 441-449.

    Google Scholar 

  • Grube RC, Radwanski E R and Jahn M 2000 Comparative genetics of disease resistance within the Solanaceae. Genetics 155, 873-887.

    Google Scholar 

  • Hetrick B A D, Wilson G W T and Cox T S 1993 Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can. J. Bot. 71, 512-518.

    Google Scholar 

  • Hetrick B A D, Wilson G W T, Gill B S and Cox T S 1995 Chromosome location of mycorrhizal responsive genes in wheat. Can. J. Bot. 73, 891-897.

    Google Scholar 

  • Hibbett D S, Gilbert L B and Donoghue M J 2000 Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407, 506-508.

    Google Scholar 

  • Kämper J, Reichmann M, Romeis T, Bölker M and Kahmann R 1995 Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73-83.

    Google Scholar 

  • Koide R T and Schreiner R P 1992 Regulation of the vesiculararbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 557-581.

    Google Scholar 

  • Kropp B R, McAfee B J and Fortin A 1987 Variable loss of ectomycorrhizal ability in monokaryotic and dikaryotic cultures of Laccaria bicolor. Can. J. Bot. 65, 500-504.

    Google Scholar 

  • Lamhamedi M S and Fortin A 1991 Genetic variations of ectomycorrhizal fungi: extramatrical phase of Pisolithus sp. Can. J. Bot. 69, 1927-1934.

    Google Scholar 

  • Lamhamedi M S, Fortin A, Kope H H and Kropp B R 1990 Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol. 115, 689-697.

    Google Scholar 

  • Langridge P J, Karakousis A, Collins N, Kretschmer J and Manning S 1995 A consensus linkage map of barley. Mol. Breeding 1, 389-395

    Google Scholar 

  • Lundeberg G 1968 The formation of mycorrhizae in different provenances of pine (Pinus silvestris L.). Svensk Bot Tidskr 62, 249-255.

    Google Scholar 

  • Manly K F and Cudmore R H Jr 1997 Map manager QT, Software for mapping quantitative trait loci. Abstracts of the 11th International Mouse Genome Conference, St Petersburg, FL.

  • Marmeisse R, Gay G and Debaud J C 1995 Genetics of ectomycorrhizal fungi and their transformation. In Biotechnology of Ectomycorrhizae. Molecular Approaches. Eds. V Stocchi, P Bonfante and M Nuti. pp. 99-114. Plenum Press, New York.

    Google Scholar 

  • Marsh J F and Schultze M 2001 Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol. 150, 525-532.

    Google Scholar 

  • Marx D H and Bryan W G 1971 Formation of ectomycorrhizae on half-sib progenies of slash pine in aseptic culture. Forest Sci. 17, 488-492.

    Google Scholar 

  • Meyers B C, Dickerman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W and Young N D 1999 Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317-332.

    Google Scholar 

  • Nehls U, Béguiristain T, Ditengou F, Lapeyrie F and Martin F 1998 The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta 207, 296-302.

    Google Scholar 

  • Nelson J C 1997 QGENE: software for marker-based genomic analysis and breeding. Mol. Breeding 3, 239-245.

    Google Scholar 

  • Newcombe G and Bradshaw H D Jr 1996 Quantitative, trait loci conferring resistance in hybrid poplar to leaf spot caused by Septoria populicata. Can. J. Forest Res. 26, 1943-1950.

    Google Scholar 

  • Newcombe G, Bradshaw H D Jr, Chastagner G A and Stettler R F 1996 A major gene for resistance to Melampsora medusae f. sp. deltoidae in hybrid poplar pedigree. Phytopath 86, 87-94.

    Google Scholar 

  • Pardo A, Hanif M, Raudaskoski M and Gorfer M 2002 Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol. Res. 106, 132-137.

    Google Scholar 

  • Pearson J N, Abbott L K and Jasper D A 1993. Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant. New Phytol. 123, 93-98.

    Google Scholar 

  • Peterson R L and Guinel F C 2000 The use of plant mutants to study regulation of colonization by AM fungi. In Arbuscular Mycorrhizas: Physiology and Function. Eds. Y Kapulnik and D D Douds Jr. pp 147-171. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrhein N and Bucher M 2001 A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462-466.

    Google Scholar 

  • Rosado S C S, Kropp B R and Piché Y 1994a Genetics of ectomycorrhizal symbiosis. I. Host plant variability and heritability of ectomycorrhizal and root traits. New Phytol. 126, 105-110.

    Google Scholar 

  • Rosado S C S, Kropp B R and Piché Y 1994b Genetics of ectomycorrhizal symbiosis. II. Fungal variability and heritability of ectomycorrhizal traits. New Phytol. 126, 111-117.

    Google Scholar 

  • Ruiz-Lozano J, Gianinazzi S and Gianinazzi-Pearson V 1999 Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9, 237-240.

    Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher R A, Lange J, Wiemken A, Kim D, Cook D R and Boller T 2000 Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol. Plant Micr. Int. 13, 763-777.

    Google Scholar 

  • Sanders I R, Clapp J P and Wiemken A 1996 The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems-a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133, 123-134.

    Google Scholar 

  • Schwartz-David R, Badani H, Smadar W, Levy A A, Galili G and Kapulnik Y 2001 Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radicle hyphae. Plant J. 27, 561-569.

    Google Scholar 

  • Selosse M A and Le Tacon F 1998 The land flora: a phototrophfungus partnership ? Trends Ecol. Evol. 13, 15-20.

    Google Scholar 

  • Senoo K, Solaiman M Z, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A and Obata H 2000 Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol. 41, 726-732.

    Google Scholar 

  • Shirasu K and Schulze-Lefert P 2000 Regulators of cell death in disease resistance. Plant Mol. Biol. 44, 371-385.

    Google Scholar 

  • Smith F A and Smith S E 1996 Mutualism and parasitism: diversity in function and structure in the 'arbuscular' (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 1-43.

    Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. Ed. 2. Academic Press, London.

    Google Scholar 

  • Staskawicz B J 2001 Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 125, 73-76.

    Google Scholar 

  • Stephenson S-A, Hatfield J, Rusu A G, Maclean D J and Manners J M 2000 cgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol. Plant Micr. Int. 13, 929-941.

    Google Scholar 

  • Stougaard J 2001 Genetics and genomics of root symbiosis. Curr. Op. Plant Biol. 4, 328-335.

    Google Scholar 

  • Tagu D, Faivre-Rampant P, Lapeyrie F, Frey-Klett P+, Vion P and Villar M 2001 Variation in the ability to form ectomycorrhizas in the F1 progeny of an interspecific poplar (Populus spp.) cross. Mycorrhiza 10, 237-240.

    Google Scholar 

  • Thomson J, Matthes-Sears U and Peterson R L 1990 Effect of seed provenance and fungal species on bead formation in roots of Picea mariana seedlings. Can J. For. Res. 20, 1746-1752.

    Google Scholar 

  • Tommerup I C and Sivasithamparam K 1990 Zygospores and asexual spores of Gigaspora decipiens, an arbuscular mycorrhizal fungus. Mycol. Res. 94, 897-900.

    Google Scholar 

  • Trappe J 1977 Selection of fungi for ectomycorrhizal inoculation in nurseries. Ann. Rev. Phytopathol. 15, 203-22.

    Google Scholar 

  • Villar M, Fefèvre F, Bradshaw H D Jr and Teissier du Cros E 1996 Molecular genetics of rust resistance in poplar (Melampsora larici-populina Kleb./Populus sp.) by bulked segregant analysis in a 2×2 factorial mating design. Genetics 143, 531-536.

    Google Scholar 

  • Wagner F, Gay G and Debaud J C 1988 Genetical variability of glutamate hydrogenase activity in monokaryotic and dikaryotic mycelia of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl. Microbiol. Biotechnol. 28, 566-571.

    Google Scholar 

  • Wagner F, Gay G and Debaud J C 1989 Genetical variation of nitrate reductase activity in mono-and dikaryotic populations of ectomycorrhizal fungus, Hebeloma cylindrosporum Romagnési. New Phytol. 113, 259-264.

    Google Scholar 

  • Walden R, Fritze K, Hayashi H, Miklashevichs E, Harling H and Schell J 1994 Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol. Biol. 26, 1521-1528.

    Google Scholar 

  • Wu R, Zeng Z B, McKeand S E and O'Malley D 2000 The case for molecular mapping in forest tree breeding. Plant Breeding Rev. 19, 41-68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, S.J., Duplessis, S. & Tagu, D. The application of genetic approaches for investigations of mycorrhizal symbioses. Plant and Soil 244, 85–95 (2002). https://doi.org/10.1023/A:1020293627422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020293627422

Navigation