Skip to main content
Log in

Coins, Quantum Measurements, and Turing's Barrier

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Is there any hope for quantum computing to challenge the Turing barrier, i.e., to solve an undecidable problem, to compute an uncomputable function? According to Feynman's '82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions. Turing proved that there is no “halting (Turing) machine” capable of distinguishing between halting and non-halting programs (undecidability of the Halting Problem). Halting programs can be recognized by simply running them; the main difficulty is to detect non-halting programs. In this paper a mathematical quantum “device” (with sensitivity ε) is constructed to solve the Halting Problem. The “device” works on a randomly chosen test-vector for T units of time. If the “device” produces a click, then the program halts. If it does not produce a click, then either the program does not halt or the test-vector has been chosen from an undistinguishable set of vectors F ε, T. The last case is not dangerous as our main result proves: the Wiener measure of F ε, T constructively tends to zero when T tends to infinity. The “device”, working in time T, appropriately computed, will determine with a pre-established precision whether an arbitrary program halts or not. Building the “halting machine” is mathematically possible. To construct our “device” we use the quadratic form of an iterated map (encoding the whole data in an infinite superposition) acting on randomly chosen vectors viewed as special trajectories of two Markov processes working in two different scales of time. The evolution is described by an unbounded, exponentially growing semigroup; finally a single measurement produces the result.

PACS: 03.67.Lx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Frederick Ungar, Publ., NewYork, Vol. 1, 1966) (translated from Russian by M. Nestell).

    Google Scholar 

  2. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators: Solvable Schrödinger Type Operators (Cambridge University Press, 2000).

  3. Ya. I. Belopolskaya. E-mail to B. Pavlov (13 December 2001).

  4. Ya. I. Belopolskaya and Yu. L. Dalecky, Stochastic Equations and Differential Geometry, Mathematics and Its Applications (Soviet Series) 30 (Kluwer Academic Publishers, Dordrecht, 1990) (translated from the Russian).

    Google Scholar 

  5. P. Benioff, J. Stat. Phys. 22, 563-591 (1980).

    Google Scholar 

  6. C. S. Calude. Information and Randomness. An Algorithmic Perspective (Springer Verlag, Berlin, 1994).

    Google Scholar 

  7. C. S. Calude and J. L. Casti, Nature 392, 549-551 (1998).

    Google Scholar 

  8. C. S. Calude, M. J. Dinneen, and K. Svozil, Complexity 6(1), 35-37 (2000).

    Google Scholar 

  9. C. S. Calude and B. Pavlov, CDMTCS Research Report 156, 13 (2001).

    Google Scholar 

  10. C. S. Calude and G. Păun. Computing with Cells and Atoms (Taylor and Francis Publishers, London, 2001).

    Google Scholar 

  11. J. L. Casti, New Scientist 154/2082, 34 (1997).

    Google Scholar 

  12. D. W. Cohen, An Introduction to Hilbert Space and Quantum Logic (Springer Verlag, New York, 1989).

    Google Scholar 

  13. R. Compano, Roadmaps for Nanoelectronics, European Commission IST Programme, Future and Emerging Technologies, 2nd edn (Luxembourg, 2000).

  14. J. Copeland, J. Philos. XCVI(1), 5-32 (2000).

    Google Scholar 

  15. M. Dumitrescu, E-mail to C. S. Calude (3 January 2002).

  16. G. Etesi and I. Németi, Non-Turing computations via Malament-Hogarth space-times, Int. J. Theor. Phys. 41, 341-370 (2001). Los Alamos preprint archive http: //arXiv:gr-qc/ 0104023, v1, (9 April 2001).

    Google Scholar 

  17. K. De Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, in Automata Studies, C. E. Shannon and J. McCarthy, eds. (Princeton University Press, Princeton, NJ, 1956), pp. 183-212.

    Google Scholar 

  18. D. Deutsch, A. Ekert, and R. Lupacchini, Bull. Symbolic Logic 6, 265-283 (2000).

    Google Scholar 

  19. R. P. Feynman, The Character of Physical Law (M.I.T. Press, Cambridge, 1965).

    Google Scholar 

  20. R. P. Feynman, Int. J. Theor. Phys. 21 467-488 (1982).

    Google Scholar 

  21. M. I. Freidlin, Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, 109 (Princeton University Press, Princeton, NJ, 1985).

    Google Scholar 

  22. I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Volume 4, Applications of Harmonic Analysis (Academic Press, NewYork, 1964).

    Google Scholar 

  23. J. Gruska, Quantum Computing (McGraw-Hill, London, 1999).

    Google Scholar 

  24. P. R. Halmos, Measure Theory (D. van Nostrand, Princeton, 1968).

    Google Scholar 

  25. J. G. Hey (ed.), Feynman and Computation. Exploring the Limits of Computers (Perseus Books, Reading, Massachusetts, 1999).

    Google Scholar 

  26. R. Ionicioiu. E-mail to C. S. Calude (16 January 2002).

  27. T. D. Kieu, Quantum algorithm for the Hilbert's tenth problem, Los Alamos preprint archive http://arXiv:quant-ph/0110136, v2 (9 November 2001).

  28. A. Lodkin, Personal communication to B. Pavlov (January 2002).

  29. A. Mikhailova and B. Pavlov, in Unconventional Models of Computations, UMC'2K I. Antoniou, C. S. Calude, and M. J. Dinneen, eds. (Springer Verlag, London, 2001) pp. 167-186.

    Google Scholar 

  30. A. Mikhailova, B. Pavlov, I. Popov, T. Rudakova, and A. Yafyasov. Mathematische Nachrichten 235, 101-128 (2002).

    Google Scholar 

  31. B. Pavlov, Russian Math. Surv. 42, 127-168 (1987).

    Google Scholar 

  32. D. W. Stroock, Probability Theory. An Analytic View (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  33. K. Svozil, in Unconventional Models of Computation C. S. Calude, J. Casti, and M. J. Dinneen, eds. (Springer, Singapore, 1998) pp. 371-385.

    Google Scholar 

  34. A. Yafyasov. Private communication to B. Pavlov (January 2002).

  35. C. P. Williams and S. H. Clearwater. Ultimate Zero and One: Computing at the Quantum Frontier (Springer Verlag, Heidelberg, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calude, C.S., Pavlov, B. Coins, Quantum Measurements, and Turing's Barrier. Quantum Information Processing 1, 107–127 (2002). https://doi.org/10.1023/A:1019623616675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019623616675

Navigation