Skip to main content
Log in

A Velocity Field and Operator for Spinning Particles in (Nonrelativistic) Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Starting from the formal expressions of the hydrodynamical (or “local”) quantities employed in the applications of Clifford algebras to quantum mechanics, we introduce—in terms of the ordinary tensorial language—a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, we also propose a new (nonrelativistic) velocity operator for a spin-\({\frac{1}{2}}\) particle. This operator appears as the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin “internal” motion observed in the center-of-mass frame (CMF). This spin component of the velocity operator is nonzero not only in the Pauli theoretical framework, i.e., in the presence of external electromagnetic fields with a nonconstant spin function, but also in the Schrödinger case, when the wavefunction is a spin eigenstate. Thus, one gets even in the latter case a decomposition of the velocity field for the Madelung fluid into two distinct parts, which constitutes the nonrelativistic analogue of the Gordon decomposition for the Dirac current. Explicit calculations are presented for the velocity field in the particular cases of the hydrogen atom, of a spherical well potential, and of an electron in a uniform magnetic field. We find, furthermore, that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In the presence of a nonuniform spin vector (Pauli case) we have, besides the component of the local velocity normal to the spin (present even in the Schrödinger theory), also a component which is parallel to the curl of the spin vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Hestenes, Space-Time Algebra (Gordon & Breach, New York, 1966); New Foundations for Classical Mechanics (Kluwer, Dordrecht, 1986); Found. Phys. 20, 1213 (1990); 23, 365 (1993); 15, 63 (1985); 12, 153 (1981); Am. J. Phys. 47, 399 (1979); 39, 1028 (1971); 39, 1013 (1971); J. Math. Phys. 14, 893 (1973); 16, 573 (1975); 16, 556 (1975); 8, 798 (1979); 8, 809 (1967); 8, 1046 (1967).

    MATH  Google Scholar 

  2. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    MATH  Google Scholar 

  3. R. Gurtler and D. Hestenes, J. Math. Phys. 16, 573 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  4. Ph. Gueret, Lectures at the Bari University (Bari, 1989).

  5. P. Lounesto, Clifford algebras, relativity and quantum mechanics, in Gravitation: The Spacetime Structure (Proceedings of SILARG VIII), P. S. Letelier et al., eds. (World Scientific, Singapore, 1994).

    Google Scholar 

  6. I. M. Benn and R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics (Hilger, Bristol, 1987); A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras: Spinor Structures (Kluwer, Dordrecht, 1990).

    Google Scholar 

  7. M. Faria-Rosa, E. Recami, and W. A. Rodrigues, Phys. Lett. B 173, 233 (1986); A. Maia, E. Recami, W. A. Rodrigues, and M. A. F. Rosa, J. Math. Phys. 31, 502 (1990); W. A. Rodrigues, E. Recami, A. Maia, and M. A. F. Rosa, Phys. Lett. B 220, 195 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Recami, W. A. Rodrigues, and P. Smrz, Hadronic J. 6, 1773 (1983).

    Google Scholar 

  9. V. S. Olkhovsky and E. Recami, Lett. Nuovo Cimento (first series) 4, 1165, (1970); Nuovo Cimento A 53, 610 (1968); Nuovo Cimento A 22, 263 (1974); E. Recami, in The Uncertainty Principle and Foundations of Quantum Mechanics, W. C. Price, S. S. Chissick, eds. (Wiley, London, 1977), p. 21; Rendic. Acc. Naz. Lincei, Cl. Sc. 49, 77 (1970); in Recent Development in Relativistic Quantum Field Theory and its Application, W. Karwowski, ed. (WUW, Wroclaw, 1976), Vol. 2, p. 251. Cf. also A. J. Kálnay et al., Phys. Rev. 188, 1484 (1967); Phys. Rev. D 1, 1092 (1970); Phys. Rev. D 3, 2357, 2977 (1971).

    Article  Google Scholar 

  10. A. Agodi, M. Baldo, and E. Recami, Ann. Phys. 77, 157 (1973); See also A. Agodi, F. Catara, and M. Di Toro, Ann. Phys. 49, 445 (1968); M. Baldo and E. Recami, Lett. Nuovo Cimento 2, 643 (1969).

    Article  ADS  Google Scholar 

  11. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 36.

    Google Scholar 

  12. A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984); A. O. Barut and A. J. Bracken, Phys. Rev. D 23, 2454 (1981); Phys. Rev. D 24, 3333 (1981); A. O. Barut and I. H. Duru, Phys. Rev. Lett. 53, 2355 (1984); A. O. Barut, Phys. Lett. B 237, 436 (1990); Phys. Lett. A 189, 277 (1994); M. Pavšič, Phys. Lett. B 205, 231 (1988); Phys. Lett. B 221, 264 (1989); Class. Quantum Gravity 7, L187 (1990); A. O. Barut and M. Pavšič, Class. Quantum Gravity 4, L131 (1987); Phys. Lett. B 216, 297 (1989); and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Pavšič, E. Recami, W. A. Rodrigues, G. D. Maccarrone, F. Raciti, and G. Salesi, Phys. Lett. B 318, 481 (1993); W. A. Rodrigues, J. Vaz, E. Recami, and G. Salesi, Phys. Lett. B 318, 623 (1993); G. Salesi and E. Recami, Phys. Lett. A 190, 137 (1994); 195, 389 (1994); E. Recami and G. Salesi, Adv. Appl. Cliff. Alg. 6, 27 (1996); Field theory of the electron: spin and zitterbewegung, in Gravity, Particles and Space-Time, P. Pronin and G. Sardanashvily, eds. (World Scientific, Singapore, 1996), pp. 345–368; Kinematics and hydrodynamics of spinning particles: Some simple, basic considerations, in Proceedings of the International Conference on the Theory of the Electron (Mexico City, 25–29 September, 1995), Sec. IV, and references therein. Cf. also H. C. Corben, Int. J. Theor. Phys. 34, 19 (1995), and references therein; and A. Kálnay et al., Refs. [9].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Vaz and W. A. Rodrigues, Phys. Lett. B 319, 203 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930); 3, 1 (1931).

    Google Scholar 

  16. E. Recami and G. Salesi, Phys. Rev. A 52, 98 (1998); G. Salesi, Mod. Phys. Lett. A 11, 1815 (1996).

    Article  ADS  Google Scholar 

  17. E. Madelung, Z. Phys. 40, 332 (1926).

    Google Scholar 

  18. See, e.g., L. D. Landau and E. M. Lifshitz, Meccanica Quantistica: Teoria Relativistica (Editori Riuniti, Rome, 1978).

  19. L. de Broglie, C. R. Acad. Sc. (Paris) 183, 447 (1926); Non-Linear Wave Mechanics (Elsevier, Amsterdam, 1960); Théorie Générale des Particules à Spin (Gauthier-Villars, Paris, 1954).

    MATH  Google Scholar 

  20. See, e.g., L. D. Landau and E. M. Lifshitz, Meccanica Quantistica: Teoria Relativistica (Editori Riuniti, Rome, 1978), pp. 150–154.

  21. See, e.g., L. D. Landau and E. M. Lifshitz, Meccanica Quantistica: Teoria Relativistica (Editori Riuniti, Rome, 1978), pp. 141–143.

  22. See, e.g., L. D. Landau and E. M. Lifshitz, Meccanica Quantistica: Teoria Relativistica (Editori Riuniti, Rome, 1978), p. 539.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partially supported by INFN, CNR, MURST, and by CAPES, CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salesi, G., Recami, E. A Velocity Field and Operator for Spinning Particles in (Nonrelativistic) Quantum Mechanics. Foundations of Physics 28, 763–773 (1998). https://doi.org/10.1023/A:1018849804045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018849804045

Keywords

Navigation