Skip to main content
Log in

Automated 1H and 13C chemical shift prediction using the BioMagResBank

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A computer program has been developed to accurately and automatically predict the 1H and 13C chemical shifts of unassigned proteins on the basis of sequence homology. The program (called SHIFTY) uses standard sequence alignment techniques to compare the sequence of an unassigned protein against the BioMagResBank – a public database containing sequences and NMR chemical shifts of nearly 200 assigned proteins [Seavey et al. (1991) J. Biomol. NMR, 1, 217–236]. From this initial sequence alignment, the program uses a simple set of rules to directly assign or transfer a complete set of 1H or 13C chemical shifts (from the previously assigned homologues) to the unassigned protein. This ‘homologous assignment’ protocol takes advantage of the simple fact that homologous proteins tend to share both structural similarity and chemical shift similarity. SHIFTY has been extensively tested on more than 25 medium-sized proteins. Under favorable circumstances, this program can predict the 1H or 13C chemical shifts of proteins with an accuracy far exceeding any other method published to date. With the expo- nential growth in the number of assigned proteins appearing in the literature (now at a rate of more than 150 per year), we believe that SHIFTY may have widespread utility in assigning individual members in families of related proteins, an endeavor that accounts for a growing portion of the protein NMR work being done today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) J.Mol.Biol., 215, 403–410.

    Google Scholar 

  • Bairoch, A. and Apweiler, R. (1996) Nucleic Acids Res., 24, 21–25.

    Google Scholar 

  • Bartels, C., Billeter, M., Güntert, G. and Wüthrich, K. (1996) J.Biomol. NMR, 7, 207–213.

    Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.V., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M.J. (1977) J.Mol.Biol., 112, 535–542.

    Google Scholar 

  • Bryant, S.H. (1996) Proteins Struct.Funct.Genet., 26, 172–185.

    Google Scholar 

  • Dayhoff, M.O., Barker, W.C. and Hunt, L.T. (1983) Methods Enzymol., 91, 524–545.

    Google Scholar 

  • De Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491–1495.

    Google Scholar 

  • George, D.G., Hunt, L.R. and Barker, W.C. (1996) Methods Enzymol., 266, 41–59.

    Google Scholar 

  • Gronwald, W., Boyko, R.F., Sönnichsen, F.D., Wishart, D.S. and Sykes, B.D. (1997) J.Biomol.NMR, 10, 165–179.

    Google Scholar 

  • Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neira, J.L. and Blanco, F.J. (1992) Magn.Reson. Chem., 30, 1012–1018.

    Google Scholar 

  • Herzberg, O. and James, M.N.G. (1988) J.Mol.Biol., 203, 761–771.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Needleman, S.B. and Wunsch, C.D. (1970) J.Mol.Biol., 48, 443–453.

    Google Scholar 

  • Orengo, C.A., Brown, N.P. and Taylor, W.R. (1992) Proteins Struct. Funct.Genet., 14, 139–167.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1991) J.Am.Chem.Soc., 113, 9436–9444.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1994) J.Biomol.NMR, 4, 215–230.

    Google Scholar 

  • Perkins, S.J. and Wüthrich, K. (1979) Biochim.Biophys.Acta, 576, 409–422.

    Google Scholar 

  • Perkins, S.J. and Dwek, R.A. (1980) Biochemistry, 19, 245–255.

    Google Scholar 

  • Redfield, C. and Robertson, J.P. (1991) In Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy (Eds., Hoch, J.C., Poulsen, F.M. and Redfield, C.), Plenum, New York, NY, U.S.A., pp. 303–316.

    Google Scholar 

  • Sali, A., Overington, J.P., Johnson, M.S. and Blundell, R.L. (1990) Trends Biochem.Sci., 15, 235–240.

    Google Scholar 

  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol.NMR, 1, 217–236.

    Google Scholar 

  • Slupsky, C.M., Reinach, F.C., Smillie, L.B. and Sykes, B.D. (1995) Protein Sci., 4, 1279–1290.

    Google Scholar 

  • Taylor, D.A., Sack, J.S., Maune, J.F. and Beckingham, K. (1991) J. Biol.Chem., 266, 21375–21384.

    Google Scholar 

  • Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J.Biomol.NMR, 2, 83–98.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J.Mol.Biol., 222, 311–333.

    Google Scholar 

  • Wishart, D.S., Boyko, R.F. and Sykes, B.D. (1994) Comput.Appl. Biosci., 10, 121–132.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) J.Biomol.NMR, 4, 171–180.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J.Biomol.NMR, 5, 1–22.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J.Biomol. NMR, 6, 135–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wishart, D.S., Watson, M.S., Boyko, R.F. et al. Automated 1H and 13C chemical shift prediction using the BioMagResBank. J Biomol NMR 10, 329–336 (1997). https://doi.org/10.1023/A:1018373822088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018373822088

Navigation