Skip to main content
Log in

Progress of Nanoscience and Nanotechnology in China

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscience and nanotechnology has been attracting wide attention and is becoming an active frontier area. Chinese scientists have followed with the main stream interest in the development of Nanoscience and nanotechnology since its initial stage. In the present paper, the achievements and present status of China in relative researches such as nanomaterials, nanodevices and characterization of nanostructure are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai C.L., 2000. Scanning Tunneling Microscopy and its Applications. Springer-Verlag, Second Edn., Heidelberg.

  • Bai, C.L., R. Colton & Y. Kuk (eds.) 1994. Papers from the 7th International Conference on Scanning Tunneling Microscopy/Spectroscopy. The American Institute of Physics, New York.

    Google Scholar 

  • Bai, C.L. 1998. Nanotechnology in China, J. Aerosol Sci. 29, 751–755.

    Google Scholar 

  • Gao H.J., K. Sohlberg, Z.Q. Xue, H.Y. Chen, S.M. Hou, L.P. Ma, X.W. Fang, S.J. Pang & S.J. Pennycook, 2000. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 84, 3001–3004.

    Google Scholar 

  • Han W., S. Fan, Q. Li & Y. Hu, 1997. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287–1289.

    Google Scholar 

  • Hou J.G., J.L. Yang, H.Q. Wang, Q.X. Li, C.G. Zeng, L.F. Yuan, B. Wang, D.M. Chen & Q.S. Zhu, 2001. Topology of two-dimensional C60 domains. Nature 409, 304–305; 1999. Identifying molecular orientation of individual C60 on a Si(111)-(7 × 7) surface. Phys. Rev. Lett. 83, 3001-3004.

    Google Scholar 

  • Li W.Z., S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou., W.Y. Zhou, R.A. Zhao & G. Wang. 1996. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703.

    Google Scholar 

  • Li Y.D., Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li & G. Zhou, 1998. A reproduction-pyrolysis-catalysis synthesis diamond. Science 281, 246–247.

    Google Scholar 

  • Liu C., Y.Y. Fan, H. Liu, H.T. Cong, H.M. Cheng & M.S. Dresselhaus, 1999. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286, 1127–1128.

    Google Scholar 

  • Lu L., M.L. Sui & K. Lu, 2000. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1465.

    Google Scholar 

  • Pan D., Y.P. Zeng, M.Y. Kong, J. Wu, Y.Q. Zhu, C.H. Zhang, J.M. Li & C.Y. Wang, 1996. Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice. Electronics Letters 32, 1726–1728.

    Google Scholar 

  • Pan Z.W., S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li & L.X. Qian, 1998.Very long carbon nanotubes. Nature 394, 631.

    Google Scholar 

  • Peng L. M., Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu & D.G. Pettifor, 2000. Stability of carbon nanotubes: How small can they be? Phys. Rev. Lett. 85, 3249–3252.

    Google Scholar 

  • Qin L., X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando & S. Iijima, 2000. The smallest carbon nanotube. Nature 408, 50.

    Google Scholar 

  • Qiu X., C. Wang, Q.D. Zeng, B. Xu, S.X. Yin, H.N. Wang, S.D. Xu & C.L. Bai, 2000. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 122, 5550–5556.

    Google Scholar 

  • Sun L.F., S.S. Xie, W. Liu, W.Y. Zhou, Z.Q. Liu, D.S. Tang, G. Wang & L.X. Qian, 2000. Materials: Carbon nanotube with a diameter of 0.5 nm. Nature 403, 384.

    Google Scholar 

  • Wang T.H., H.W. Li & J.M. Zhou, 2001. Si single electron transistor with in-plane point-contact metal gates. Appl. Phys. Lett. 78, 2160–2162.

    Google Scholar 

  • Wang T.H. & Y. Aoyagi, 2001. Single electron charge in parallel dot structure. Appl. Phys. Lett. 78, 634–636.

    Google Scholar 

  • Wang N., Z.K. Tang, G.D. Li & J.S. Chen, 2000. Single walled 4 °Acarbon nanotube arrays. Nature 408, 50–51.

    Google Scholar 

  • Wang C. & C.L. Bai, 1996. Evidence of diffusion characteristics of field emission electrons in nanostructuring process on graphite surface. Appl. Phys. Lett. 69, 348–350.

    Google Scholar 

  • Wang Z., F. Liu & J. Liang, 2000. Self-assembled InAs/GaAs quantum dots and quantum dot laser. Science in China A 43, 861–870.

    Google Scholar 

  • Xie Y., Y.T. Qian, W.Z. Wang, S.Y. Zhang & Y.H. Zhang, 1996. A benzene-thermal synthetic route to nonocrystalline GaN. Science 272, 1926.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C. Progress of Nanoscience and Nanotechnology in China. Journal of Nanoparticle Research 3, 251–256 (2001). https://doi.org/10.1023/A:1017988725647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017988725647

Navigation