Skip to main content
Log in

Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

One of the major problems for cassava is the rapid deterioration after harvesting cassava tuberous roots, which limits the possibilities for production and distribution of cassava in the world. Postharvest deterioration is an inherent problem for cassava since wounding and mechanical damage of the tuberous roots cannot be prevented during harvesting, which includes postharvest physiological deterioration (PPD) and secondary deterioration. To date, the molecular mechanism and biochemical pathways of PPD are poorly understood. The aim of this project, which is focusing on the early stages (first 72 hrs), is to gain molecular insight and identify important metabolic pathways during the process of PPD in cassava tuberous roots. Finally by reverse genetic approaches to delay or even prevent the process of PPD in cassava tuberous roots. By using a new RNA fingerprinting method, called cDNA-AFLP, we have screened more than 6,000 TDFs (Transcript Derived Fragments) via up to 100 primer combinations during the early process of PPD in cassava. Only 10% of the TDFs are developmentally regulated, while the other90% are expressed throughout the process of PPD in cassava tuberous roots. Furthermore, in order to set up a functional catalogue of differentially expressed genes during PPD, 70 TDFs were selected and isolated based on their expression patterns, which were either up-regulated,down-regulated or transiently induced. Around 40 of these TDFs were found to be similar with known genes in databases. The other 30 TDFs were present mostly genes without known function. Through data analysis,it is shown that important biochemical and physiological processes, such as notably oxygen stress, carbohydrate metabolism, protein metabolism and phenolic compounds synthesis, are involved in PPD in cassava tuberous roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller & J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Amor Y., E. Babiychuk, D. Inze & A. Levine, 1998. The involvement of poly (ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS letter 440(1–2): 1–7.

    Article  CAS  Google Scholar 

  • Averre, C.W., 1967. Vascular streaking of stored cassava roots. In: Proceedings 1st International Symposium tropical Root Crops. Trinidad 2: pp.31–35.

    Google Scholar 

  • Bachem, C.W.B., Rutger S. van der Hoeven, Steef M. de Bruijn, Dick Vreugdenhil, Marc Zabeau & Richard G.F. Visser, 1996. Visualisation of differential gene expression using a novel RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant J 9: 745–753.

    Article  CAS  Google Scholar 

  • Bachem, C.W.B., R.J.F.J. Oomen & Richard G.F. Visser, 1998. Transcript Imaging with cDNA-AFLP: A Step-by-Step Protocol. Plant Molec Biol Rep 16: 157–173.

    Article  CAS  Google Scholar 

  • Booth, R.H., 1976. Storage of fresh cassava (Manihot esculenta Crantz.) I. Post-harvest deterioration and its control. Exp Agric 12: 103–111.

    Google Scholar 

  • Booth, R.H., 1977. Storage of fresh cassava (Manihot esculenta Crantz.) II. Simple storage techniques. Exp Agric 13: 119–128.

    Article  Google Scholar 

  • Cassava production systems program, 1976. CIAT's Annual Report. pp. B 44–47.

  • Cooke, R., M. Raynal, M. Laudie et al., 1996. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs.The Plant J 9(1): 101–124.

    Article  CAS  Google Scholar 

  • Frank, M.R., J.M. Deyneka & M.A. Schuler, 1996. Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol 110(3): 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Gallois, P., T. Makishima, V. Hecht, B. Despres, M. Laudie, T. Nishimoto & R. Cooke, 1997. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. The Plant J 11(6): 1325–1331.

    Article  CAS  Google Scholar 

  • Gilson, S. & C. Somerville, 1993. Isolating plants genes. Trends Biotech 11: 306–312.

    Article  Google Scholar 

  • Greenberg, J.T., 1996. Programmed cell death: A way of life for plants. Proc Natl Acad Sci (USA) 93: 12094–12097.

    Article  CAS  Google Scholar 

  • Hiraga, S., H. Ito, H. Matsui, M. Honma & Y. Ohashi, 1999. cDNA sequences for two novel tobacco peroxidase isoenzymes. Plant Physiol 120: 1205.

    Article  Google Scholar 

  • Hirose, S., E. Data & I. Uritani, 1983. Some observation on postharvest deterioration of cassava (Manihot esculenta Crantz) root. Japan J Trop Agr 27: 149–157.

    Google Scholar 

  • Hirose S., 1984. II-1 Physiology of postharvest deterioration of cassava roots. Tropical Root Crops: Postharvest Physiology and Procession, pp. 37–51.

  • Huang, J., C. Bachem, E. Jacobsen & R.G.F. Visser, 1999.Analysis of postharvest deteriotation in cassava (Manihot esculenta Crantz). Proceedings of the Fourth International Scientific Meeting of the Cassava Biotechnology Network, pp. 537–550, Sao Paulo, Brazil.

  • Ingram, J.S. & J.R.O. Humphries, 1972. Cassava storage: a review. Trop Sci 14: 131–148.

    CAS  Google Scholar 

  • Jabs, T., 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57(3): 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.Q., C. Sautter, I. Potrykus & P.K. Johanna, 1996. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotech 14: 736–740.

    Article  CAS  Google Scholar 

  • Li, X., S. Kaul, S. Rounsley et al., 1999. Sequencing and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    Article  Google Scholar 

  • Mayer, K., C. Schuller, R. Wambutt et al., 1999. Sequencing and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M., 1994. Structure and organisation of the Arabidopsis thaliana nuclear genome. In E.M. Meyerowitz & C.R. Somerville (Eds.), Arabidopsis, Ed 2, pp 21–36. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY.

    Google Scholar 

  • Mondaldo, A., 1973. Vascular streaking of cassava root tubers. Trop Sci 15: 39–46.

    Google Scholar 

  • Passam, H.C., S.J. Read & J.E. Rickard, 1976. Wound repair in yam tuber: physiological processes during repair. New Phytol 77: 325–331.

    Article  Google Scholar 

  • Piffanelli, P., A. Devoto & P. Schulze-Lefert, 1999. Defence signalling pathways in cereals. Curr Opinion Plant Biol 2(4): 295–300.

    Article  CAS  Google Scholar 

  • Plumbley, R.A. & J.E. Rickard, 1991, Post-harvest deterioration of cassava. Trop Sci 31: 295–303.

    Google Scholar 

  • Raemakers, C.C.J.M., E. Sofiari, N. Taylor, G. Henshaw, E. Jacobsen & R.G.F. Visser, 1996. Production of transgenic cassava (Manihot esculenta Crantz.) plants by particle bombardment using luciferase activity as selection marker. Molec Breed 2: 339–349.

    Article  CAS  Google Scholar 

  • Reilly, K., Y. Han., J. Tohme & J.R. Beeching, 1999. Oxidative stress related genes in cassava postharvets physiological deterioration, pp. 560–571. Proc Fourth Intern Sci Meet Cassava Biotech Netw, Sao Paulo, Brazil.

  • Rickard, J.E., 1982. Investigation into post harvest behaviour of cassava roots and their responsise to wounding. PhD thesis. University of London.

  • Ryerson, D.E. & M.C. Heath, 1996. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatment. Plant Cell 8: 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Schöpke, C., N.J. Taylor, R. Carcamo, N.K. Konan, P. Marmey, G.G. Henshaw, R.N. Beachy & C. Fauquet, 1996. Regeneration of transgenic cassava plants (Manihot esculenta Crantz.) from mirobombarded embryogenic suspension cultures. Nature Biotech 14: 731–735.

    Article  Google Scholar 

  • Takaya, M., K. Akira, K. Masaayuki, A. Kazuya, E.I. Tomoko & O. Mitsuo, 2000. Molecular cloning of a homologue of dad-1 gene in citrus: distinctive expression during fruit development. Biochimica et Biophysica Acta 1490: 198–202.

    Google Scholar 

  • Tanaka, Y., T. Makishima, Y. Sasabe., T. Ichinose, T. Shiraishi, T. Nishimoto & T. Yamada, 1997. dad-1, A putative programmed cell death suppressor gene in rice. Plant Cell Physiol 38:397–383.

    Google Scholar 

  • Taylor, N.J., E. Michelle, J.K. Rebecca, D.M.D. Christopher, D. Blakesley & G.G. Henshaw, 1996. Devolpment of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Biotech 14: 726–730.

    Article  CAS  Google Scholar 

  • Taylor, N.J., M.V. Masona, C. Schöpke & C.M. Fauquet, 1999. Trangenic cassava for food security and economic development. Transgenic Food: in press.

  • Uritani, I., 1998. Biochemical comparison in storage: Stress response between sweetpotato and cassava. Trop Agric (Trinidad) 75(2): 177–182.

    Google Scholar 

  • Uritani, I., 1999. Biochemistry on postharvest metabolism and deterioration of some tropical tuberous crops. Bot Bull Acad Sin 40: 177–183.

    CAS  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Pelman, M. Kuiper & M. Zabeau, 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

  • Wambutt, R., G. Murphy, G. Volckaert et al., 2000. Progress in Arabidopsis genome sequencing and functional genomics. J Biotech 78(3): 281–292.

    Article  CAS  Google Scholar 

  • Wang, H., J. Li, R.M. Bostock & D.G. Gilchrist, 1996. Apotosis: A function paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Wenham, J.E., 1995. Post-harvest deterioration of cassava - A biotechnology perspective. FAO Plant Prod Protec Paper.

  • Wheatley, C.C., 1982. Studies on Cassava (Manihot esculenta Crantz) Root Post-Harvest Physiological Deterioration. PhD thesis, Wye College, University of London.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Bachem, C., Jacobsen, E. et al. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica 120, 85–93 (2001). https://doi.org/10.1023/A:1017555605219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017555605219

Navigation