Skip to main content
Log in

Optimization of culture conditions for growth of the green alga Haematococcus pluvialis

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of light intensity, inoculum volume, sodium nitrate and carbon dioxide concentrations on the growth of Haematococcus pluvialis were investigated using response surface methodology (RSM). All the four variables exhibited significant effects on growth and can be related (r ≥ 0.926, P ≤ 0.01) by a second-order polynomial consisting of linear, quadratic and interaction terms. The total quadratic effect (P ≤ 0.01) dominates over the total linear effect (P ≤ 0.01) but the role of interaction terms (P ≤ 0.10) is marginal. The optimum values of these variables were: carbon dioxide 1.54%, sodium nitrate 1.06 g/l, inoculum volume 24.97% and light intensity 2.42 klux; the predicted maximum value for the yield of biomass was 0.51 g/l (dry weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhnazarova, S. & Kafarov, V. 1982 Experiment Optimization in Chemistry and Chemical Engineering, pp. 151–240. Moscow: MIR Publishers.

    Google Scholar 

  • Bhattacharya, S. & Prakash, M. 1994 Extrusion cooking of blends of rice and chickpea flour: a response surface analysis. Journal of Food Engineering 21, 315–330.

    Google Scholar 

  • Boussiba, S. & Vonshak, A. 1991 Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiology 32, 1077–1082.

    Google Scholar 

  • Boussiba, S., Bing, W., Yuan, J.P., Zarka, A. & Chen, F. 1999 Changes in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnology Letters 21, 601–604.

    Google Scholar 

  • Ding, S.Y., Chu, W.S., Yong, Y.Y., Bee, P.L. & Lee, Y.K. 1994 Production strategies of astaxanthin by growing of Haematococcus lacustris cells. In Proceedings of Algal Biotechnology in the AsiaPacific Region, eds. Phang, F.M., Lee, Y.K., Borowitzka, M.A. and Whitton, B.A. pp. 28–32. Kuala Lumpur: University of Malaya.

    Google Scholar 

  • Droop, M.R. 1954 Conditions governing haematochrome formation and loss in the alga Haematococcus Pluvialis Flotow. Archives of Microbiology 20, 391–397.

    Google Scholar 

  • Fabregas, J., Dominguez, A., Alvarez, D., Lamela, T. & Otero, A.1998 Factors controlling the production of astaxanthin in Haematococcus pluvialis. Biotechnology Letters 20, 623–626.

    Google Scholar 

  • Fabregas, J., Dominguez, A., Regueiro, M., Maseda, A. & Otero, A. 2000 Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology 53, 530–535.

    Google Scholar 

  • Gong & Chen 1998 Influence of medium components on astaxanthin content and processing of Haematococcus Pleucialis. Process Biochemistry 33, 385–391.

    Google Scholar 

  • Husemann, W. & Barz, W. 1977 Photoautotrophic growth and photosynthesis in cell suspension cultures of Chenopodium rubrum. Physiologia Plantarum 40, 77–81.

    Google Scholar 

  • Kanz, T. & Bold, H.C. 1969 In Physiological Studies 9. Morphological and Taxonomic Investigations of Nostoc and Anabaena in Culture, University of Texas publ. no. 6924. Austin, Texas: University of Texas.

    Google Scholar 

  • Khuri, A.I. & Cornell, J.A. 1987 Response surfaces: designs and analyses, pp. 19–69. New York: Marcel Dekker, ISBN 0-82477653-4.

    Google Scholar 

  • Kobayashi, M., Kurimuru, Y. & Tsuji, Y. 1997 Light independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnology Letters 19, 507–509.

    Google Scholar 

  • Little, T.M. & Hills, F.J. 1978 Agricultural Experimentation: Design and Analysis, pp. 247–266. New York: John Wiley. ISBN 0-471-02352-3.

    Google Scholar 

  • Lorenz, T.R. & Cysewski, G.R. 2000 Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18, 160–167.

    Google Scholar 

  • Myers, R.H. 1971 Response Surface Methodology, pp. 61–106. Boston: Allyn and Bacon.

    Google Scholar 

  • Tjahjono, A.E., Hayama, Y., Kakizono, T., Tereda, Y., Nishio, N. & Nagai, S. 1994 Hyper accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperature. Biotechnology Letters 16, 133–138.

    Google Scholar 

  • Usha, T., Sarada, R., Ramachandra Rao, S. & Ravishankar, G.A. 1999 Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technology 68, 197–199.

    Google Scholar 

  • Usha, T., Sarada, R. & Ravishankar, G.A. 2001 A culture method for micro algal forms using two-tier vessel providing carbon dioxide environment: studies on growth and carotenoid production. World Journal of Microbiology and Biotechnology 17, 325–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarada, R., Bhattacharya, S. & Ravishankar, G. Optimization of culture conditions for growth of the green alga Haematococcus pluvialis . World Journal of Microbiology and Biotechnology 18, 517–521 (2002). https://doi.org/10.1023/A:1016349828310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016349828310

Navigation