Skip to main content
Log in

Pharmacokinetic Analysis and Antiepileptic Activity of N-Valproyl Derivatives of GABA and Glycine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To explore the possibility of utilizing valproyl derivatives of GABA and glycine as new antiepileptics by using the structure pharmacokinetic-pharmacodynamic relationship (SPPR) approach.

Methods. The pharmacokinetics and pharmacodynamics (anticonvulsant activity and neurotoxicity) of the following four conjugation products of valproic acid (VPA), glycine and GABA were investigated: valproyl glycine, valproyl glycinamide, valproyl GABA and valproyl gabamide.

Results. Only valproyl glycinamide showed a good anticonvulsant profile in both mice and rats due to its better pharmacokinetic profile. Valproyl glycinamide was more potent than one of the major antiepileptic agents - VPA and showed a better margin between activity and neurotoxicity. Valproyl glycine and valproyl GABA were partially excreted unchanged in the urine (fe = 50% and 34%, respectively), while the urinary metabolites of the amide derivatives were valproyl glycine and valproyl GABA.

Conclusions. The four investigated valproyl derivatives did not operate as chemical drug delivery systems (CDDS) of glycine or GABA, but acted rather as drugs on their own. The current study demonstrates the benefit of the SPPR approach in developing and selecting a potent antiepileptic compound in intact animals based not only on its intrinsic pharmacodynamic activity, but also on its better pharmacokinetic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F.E. Dreifus. New anticonvulsant drugs in “Epilepsy, Progress in Treatment”. M Dam, S.I. Johannessen, B. Nilsson and M. Sillapaa (eds.), Wiley & Sons, NY (1987) pp. 247–256.

    Google Scholar 

  2. E. Roberts, T.N. Chase, D.B. Tower (eds.). “GABA in Nervous System Function”, Raven Press, NY (1976).

    Google Scholar 

  3. E.J. Hammond and B. Wilder. A gamma-vinyl GABA: as new antiepileptic drug. Clin. Neuropharmacol., 8, 1–12 (1985).

    Google Scholar 

  4. D. Chadwick (ed). New Trends in Epilepsy Management: The Role of Gabapentin. Royal Society of Medicine Services Ltd., London, 1993.

    Google Scholar 

  5. S.M. Grant and R.C. Heel. Vigabatrin — A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs, 41, 889–926 (1991).

    Google Scholar 

  6. J. Roba, R. Cavalier, A. Cordi, H. Gorissen, M. Herin, P. Janssens de Varebeke, C. Onkelinx, M. Remacle and W. van Dorsser. Milacemide in “New Anticonvulsant Drug”, B.S. Meldrum and R.J. Porter (eds.), John Libby, London (1986) pp. 179–190.

    Google Scholar 

  7. D.M. Lambert, J.H. Poupaert, J-M. Maloteaux and P. Dumont. Anticonvulsant activities of N-benzloxycarbonylglycine after parenteral administration. Neuropharmacol. Neurotoxicol. 5, 777–780 (1994).

    Google Scholar 

  8. J. Liu, N. Seiler, C. Marescaux, A. Depaulis and M. Vergns. Potentiation of γ-vinyl GABA (vigabatrin) effects by glycine. Eur. J. Pharmacol. 182, 109–115 (1990).

    Google Scholar 

  9. E. Toth and A. Lajtha. Glycine potentiates the action of some anticonvulsant drugs in some seizure models. Neurochem. Res. 8, 1711–1718 (1984).

    Google Scholar 

  10. J.D. Wood, P. Krogsgaard-Larsen and A. Schousboe. Amplification by glycine of the effect of the GABA transport inhibitor THPO on synaptosomal GABA level. Neurochem. Res. 13, 917–921 (1988).

    Google Scholar 

  11. N. Seiler and S. Sarhan. Synergistic anticonvulsant effects of a GABA agonist and glycine. Gen Pharmacol. 15, 367–369 (1984).

    Google Scholar 

  12. R.H. Levy. Valproate: Modern perspectives. Epilepsia (Suppl. 1) S1–S77 (1984).

  13. R.H. Levy and D.D. Shen. Valproate absorption, distribution and excretion. In: R.H. Levy, R.H. Mattson and B.S. Meldrum (Eds) Antiepileptic Drugs, 4th ed. Raven Press, New York, in press, 1995.

    Google Scholar 

  14. G. Zaccara, A. Messori and F. Moroni. Clinical pharmacokinetics of valproic acid-1988. Clin Pharmacokinet. 15, 367–389 (1988).

    Google Scholar 

  15. R.G. Granneman, S-I. Wang, J.M. Machinist and J.W. Kesterson. Aspects of metabolism of valproic acid. Xinobiotica 14, 375–387 (1984).

    Google Scholar 

  16. A. Vamvakides and N. Kolokouris. Effect synergique du GABA et de la glycine dans l'antagonisme des convulsions du pentetrazole chez le rat. Etude du valpromide de glycine. Ann. Pharm. Fr. 44, 501–508 (1986).

    Google Scholar 

  17. S. Blowmick, M. Pal and S.P. Pal. N-valproyl GABA as a potential anticonvulsant agent. Med. Sci. Res. 17, 491–492 (1989).

    Google Scholar 

  18. H. Nau, R-S. Siegbert and K. Ebley. Valproic acid — induced neural table defects in mouse and humans: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanism. Pharmacol. Toxicol. 69, 310–321 (1991).

    Google Scholar 

  19. H. Nau and G. Hendrickx. Valproic acid teratogenesis. Atlas Sci. Pharmacol. 52–56 (1987).

  20. R.J. Porter, J.J. Cereghino, G.D. Gladding, B.J. Hessie, H.J. Kupferberg, B. Scoville and B.G. White. Antiepileptic Drug Development Program. Cliv. Cin. Quat. 51, 293–305 (1984).

    Google Scholar 

  21. M. Bialer, M. Friedman and J. Dubrovsky. A rapid GLC assay for monitoring valproic acid and valpromide in plasma. J. Pharm. Sci. 73, 991–993 (1984).

    Google Scholar 

  22. M. Gibaldi and D. Perrier. Pharmacokinetics, Ed. 2, Marcel Dekker, New York 1982, pp. 445–449.

    Google Scholar 

  23. L.Z. Benet and R.L. Galeazzi. Non-compartmental determination of steady-state volume of distribution. J. Pharm. Sci. 68, 1071–1074 (1979).

    Google Scholar 

  24. K. Yamaoka, T. Nakagawa and T. Uno. Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 6, 547–558, 1978.

    Google Scholar 

  25. K. Yamaoka. Methods for Pharmacokinetic Analysis for Personal Computers, Ed. 2, Nanko-D Ltd., Tokyo, 1986, pp. 145–175.

    Google Scholar 

  26. M. Rowland and T. Tozer. Clin. Pharmacokinet. Ed. 2, Lea and Febiger, Philadelphia, 1989, pp. 151–152.

    Google Scholar 

  27. M. Gibaldi and D. Perrier. Pharmacokinetics, Ed. 2, Marcel Dekker, New York, 1982, pp. 327–330.

    Google Scholar 

  28. R.B. Silverman, R. Andruszkiewicz, S.M. Nanavati, C.P. Taylor and M.G. Vartanian. 3-Alkyl-4-aminobutyric acids: The first class of anticonvulsant agents that activates L-glutamic acid decarboxylase. J. Med. Chem. 34, 2295–2298 (1991).

    Google Scholar 

  29. C.P. Taylor, M.G. Vartanian, P-W. Yuen, C. Bigge, N. Suman-Chauban and D.R. Hill. Potent and stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vivo binding at a novel site labeled by tritiated gabapentin. Epileps. Res. 14, 11–15 (1993).

    Google Scholar 

  30. A. Vamvakides, Z. Papadopoulou-Daifotis and J. Noras. Etudes in vivo et in vitro avec une nouvelle drogue GABA-ergique (Gabalid) et son impact sur la liberation de la dopamine cerebale. J. Pharmacol. (Paris) 14, 248–249 (1983).

    Google Scholar 

  31. A. Vamvakides. Synthese et etude pharmacologique du linoleamide de glycine. Ann. Pharm. Fr. 44, 145–155 (1986).

    Google Scholar 

  32. E.M. O'Brien, K.T. Tipton, M.S. Benedetti, A. Bonsignori, P. Marrari and P. Dostert. Is the oxidation of milacemide by monoamine oxidase a major factor in its anticonvulsant action? Biochem. Pharmacol. 41, 1731–1737 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadad, S., Bialer, M. Pharmacokinetic Analysis and Antiepileptic Activity of N-Valproyl Derivatives of GABA and Glycine. Pharm Res 12, 905–910 (1995). https://doi.org/10.1023/A:1016277507865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016277507865

Navigation