Skip to main content
Log in

The expression of GAD67 isoforms in zebrafish retinal tissue changes over the light/dark cycle

  • Published:
Journal of Neurocytology

Abstract

We show the levels of glutamic acid decarboxylase (GAD), the enzyme catalyzing the conversion of glutamic acid to GABA, changes in zebrafish retinal tissue during the light/dark cycle. Further, we identify two transcripts of the GAD67 gene, full-length GAD67 and the truncated 25 kDa alternative splice variant (ES), as the major GAD isoforms in this tissue. GAD-positive neurons were identified immunocytochemically by probing retinal sections with K2, an antibody to the GAD67 isoform, and with an antibody specific for the 25 kDa splice variant. For both antibodies, GAD-immunoreactivity was observed in horizontal cells in the distal retina and amacrine cells in the proximal retina, with both cell bodies and processes labeled. No apparent difference in K2 labeling pattern was observed in tissue harvested 8 hrs after light offset or onset, whereas ES label was identified in more structures in dark tissue. Quantification of GAD levels was determined by densitometry of Western Blots. The protein content of GAD67 and ES varied between tissue harvested during the light and the dark. ES expression was up-regulated in dark tissue; whereas, full-length GAD67 expression increased in light tissue. In vivo GABA content, measured with high performance liquid chromatography (HPLC), was found to increase in light tissue, paralleling the expression of full-length GAD67 transcripts. Expression of ES did not correlate with measured GABA levels, suggesting this isoform, which lacks the catalytic domain necessary for enzymatic activity, may have a different physiological role in retinal tissue. The inverse expression patterns of full-length GAD67 and ES suggest that alternative splicing of GAD67 may be triggered by the light and/or dark cycle, resulting in a change in inhibitory neurotransmitter content in retinal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asada, H., Kawamura, Y., Maruyama, J., Kume, H., Ding, R.-G., Ji, F. Y., Kanbara, N., Kuzume, H., Sanbo, M., Yagi, T. & Obata, K. (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochemical and Biophysical Research Communications 229, 891–895.

    PubMed  Google Scholar 

  • Asada, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R.-G., Kanbara, N., Kuzume, J., Sanbo, M., Yagi, T. & Obata, K. (1997) Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proceedings of the National Academy of Sciences. 94, 6496–6499.

    Google Scholar 

  • Behar, T., Ma, W., Hudson, L. & Barker, J. (1994) Analysis of anatomical distribution of GAD67 mRNA encoding truncated glutamic acid decarboxylase proteins in the embryonic rat brain. Developmental Brain Research 77, 77–87.

    PubMed  Google Scholar 

  • Behar, T., Schaffner, A., Laing, P., Hudson, L., Komoly, S. & Barker, J. (1993) Many spinal cord cells transiently express low molecular weight forms of glutamic acid decarboxylase during embryonic development. Developmental Brain Research 72, 203–218.

    PubMed  Google Scholar 

  • Bond, R. W., Jansen, K. R. & Gottlieb, D. I. (1988) Pattern of expression of glutamic acid decarboxylase mRNA in the developing rat brain. Proceedings of the National Academy of Sciences 85, 3231–3234.

    Google Scholar 

  • Bosma, P. T., Blazquez, M., Collins, M. A., Bishop, J. D. D., Droiun, G., Priede, I. G., Docherty, K. & Trudeau, V. T. (1999) Multiplicity of glutamic acid decarboxylase (GAD) in vertebrates: Molecular phylogeny and evidence for a new GAD paralog. Molecular Biology and Evolution 16, 397–404.

    PubMed  Google Scholar 

  • Brockerhoff, S. E., Hurley, J. B., Janssenbienhold, U., Neuhauss, S. C. F., Driever, W. & Dowling, J. E. (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Sciences 92, 10545–10549.

    Google Scholar 

  • Cagampang, F. R. A., Rattray, M., Powell, J. F., Campbell, I. C. & Coen, C. W. (1996) Circadian changes of glutamate decarboxylase 65 and 67 mRNA in the rat suprachiasmatic nuclei. Neuroreport 7, 1925–1928.

    PubMed  Google Scholar 

  • Chiu, J. F., Mack, A. F. & Fernald, R. D. (1995) Daily rhythm of cell proliferation in teleost retina. Brain Research 673, 119–125.

    PubMed  Google Scholar 

  • Connaughton, V. P., Behar, T. N., Liu, W.-L. S. & Massey, S. (1999) Localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483–490.

    PubMed  Google Scholar 

  • Dowling, J. E. (1987) The Retina, an Approachable Part of the Brain. Cambridge, MA: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N. & Tobin, A. J. (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7, 91–100.

    PubMed  Google Scholar 

  • Fernald, R. D. (1991) Teleost vision: Seeing while growing. Journal of Experimental Zoology Supplement 5, 167–180.

    Google Scholar 

  • Hare, T. A. & Bala Manyam, N. V. (1980) Rapid and sensitive ion-exchange fluorometric measurement of gamma aminobutyric acid in physiological fluids. Analytical Biochemistry 101, 349–355.

    PubMed  Google Scholar 

  • Johns, P. R. (1982) Formation of photoreceptors in larval and adult goldfish. Journal of Neuroscience 2, 178–198.

    PubMed  Google Scholar 

  • Kaufman, D. L., Houser, C. R. & Tobin, A. J. (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry 56, 720–723.

    PubMed  Google Scholar 

  • Kohler, K., Kolbinger, W., Kurz-Isler, G. & Weiler, R. (1990) Endogenous dopamine and cyclic events in the fish retina, II: Correlation of retinomotor movement, spinule formation, and connexon density of gap junctions with dopamine activity during light/dark cycles. Visual Neuroscience 5, 417–428.

    PubMed  Google Scholar 

  • Kolbinger, W., Kohler, K., Oetting, H. & Weiler, R. (1990) Endogenous dopamine and cyclic events in the fish retina, I: HPLC assay of total content, release, and metabolic turnover during different light/dark cycles. Visual Neuroscience 5, 143–149.

    PubMed  Google Scholar 

  • Lam, D. M. K. (1972) The biosynthesis and content of gamma-aminobutyric acid in the goldfish retina. Journal of Cell Biology 54, 225–238.

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.

    PubMed  Google Scholar 

  • Martin, D. L. & Rimvall, K. (1993) Regulation of γ-aminobutyric acid synthesis in the brain. Journal of Neurochemistry 60, 395–407.

    PubMed  Google Scholar 

  • Martin, S. C., Heinrich, G. & Sandell, J. (1998) Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish. Journal of Comparative Neurology 396, 253–266.

    PubMed  Google Scholar 

  • Munaro, N. I., Morello, H. & Taleisnik, S. (1991) Glutamic acid decarboxylase activity of the preoptic area and hypothalamus is influenced by the serotonergic system. Journal of Neurochemistry 57, 1302–1306.

    PubMed  Google Scholar 

  • Nadi, N. S. & Margolis, F. L. (1978) A simple method for the elimination of amine contaminants in buffers for single column amino acid analysis in physiological samples at picomole levels. Analytical Biochemistry 91, 180–185.

    PubMed  Google Scholar 

  • Nishimura, C., Ida, S. & Kuriyama, K. (1981) Alteration of GABA system in frog retina following short light and dark adaptations-a quantitative comparison with retinal taurine. Brain Research 219, 433–438.

    PubMed  Google Scholar 

  • Sandell, J. H., Martin, S. C. & Heinrich, G. (1994) The development of GABA immunoreactivity in the retina of the zebrafish. Journal of Comparative Neurology 345, 596–601.

    PubMed  Google Scholar 

  • Soghomonian, J.-J. & Martin, D. L. (1998) Two isoforms of glutamate decarboxylase: Why? Trends in Physiological Sciences 19, 500–505.

    Google Scholar 

  • Starr, M. S. (1973) Effect of dark adaptation on the GABA system in retina. Brain Research 59, 331–338.

    PubMed  Google Scholar 

  • Szabo, G., Katarova, Z. & Greenspan, R. (1994) Distinct protein forms are produced from alternatively splice bicistronic glutamic acid decarboxylase mRNAs during development. Molecular and Cellular Biology 14, 7535–7545.

    PubMed  Google Scholar 

  • Ter-Margarian, A. & Djamgoz, M. B. A. (1992) Cytochalasin inhibits light-dependent synaptic plasticity of horizontal cells in teleost retina. Neuroscience Letters 147, 131–135.

    PubMed  Google Scholar 

  • Yamasaki, E. N., Andrade da Costa, B. L. S., Barbosa, V. D. & Hokoc, J. N. (1997) Retinal ganglion cell depletion alters the phenotypic expression of GABA and GADin the rat retina. European Journal of Neuroscience 9, 1885–1890.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Connaughton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connaughton, V.P., Dyer, K.D., Nadi, N.S. et al. The expression of GAD67 isoforms in zebrafish retinal tissue changes over the light/dark cycle. J Neurocytol 30, 303–312 (2001). https://doi.org/10.1023/A:1014404328905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014404328905

Keywords

Navigation