Skip to main content
Log in

Sturgeon genetics and cytogenetics: recent advancements and perspectives

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The aim of this review is to introduce current knowledge in the field of sturgeon genetics. The first section deals with sturgeon cytogenetics, reviewing karyotype organization and polyploidization events during evolution of Acipenseriformes. The second section concerns the results of applications of molecular biology to studies of phylogenetic relationships between extant species, intraspecific analysis of wild populations and stocks for conservation purposes, together with characterization of molecular markers for species identification, relevant to forensic and conservation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcón, J.A. & M.C. Alvarez, 1999. Genetic identification of sparid species by isozyme markers: application to interspecific hybrids. Aquaculture 173: 95–103.

    Google Scholar 

  • Arefjev, V.A., 1983. Polykaryogram analysis of ship, Acipenser nudiventris Lovetsky (Acipenseridae, Chondrostei). Voprosy Ichthyol. 23: 209–216.

    Google Scholar 

  • Arefjev, V.A., 1993. NOR-banding studies of Acipenser baeri karyotype, pp. 30–31 in Int. Symp. Sturgeons. VNIRO Publishing, Moscow.

    Google Scholar 

  • Arnason, U., S. Gretarsdottir & B. Widegren, 1992. Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. Mol. Biol. Evol. 9: 1018–1028.

    Google Scholar 

  • Artyukhin, E.N., 1995. On biogeography and relationships within the genus Acipenser. Sturg. Quart. 3(2): 6–8.

    Google Scholar 

  • Avise, J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb & N.C. Saunders, 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489–522.

    Google Scholar 

  • Bachmann, K., O.B. Goin & C.J. Goin, 1972. The nuclear DNA of Polypterus palmas. Copeia 1972: 363–365.

    Google Scholar 

  • Bemis, W.E., E.K. Findeis & L. Grande, 1997. An overview of Acipenseriformes. Environ. Biol. Fish. 48: 25–72.

    Google Scholar 

  • Bemis, W.E. & B. Kynard, 1997. Sturgeon rivers: an introduction to acipenseriform biogeography and life history. Environ. Biol. Fish. 48: 167–184.

    Google Scholar 

  • Bennett, M.D., 1995. The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics, pp. 167–183 in Kew Chromosome Conference IV, edited by P.E. Brandham & M.D. Bennet. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • Berg, L.S., 1962. Freshwater Fishes of the USSR and Adjacent Countries, pp. 52–111, Vol. 1. (Translated by Israel Program for Scientific Translation, Jerusalem) Oldbourne Press, London.

    Google Scholar 

  • Birstein, V.J. & V.P. Vasil'ev, 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pishes): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 73: 3–12.

    Google Scholar 

  • Birstein, V.J., A.I. Poletaev & B.F. Goncharov, 1993. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14(4): 337–383.

    Google Scholar 

  • Birstein, V.J., R. Hanner & R. DeSalle, 1997.Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ. Biol. Fish. 48: 127–155.

    Google Scholar 

  • Birstein, V.J. & R. DeSalle, 1998. Molecular phylogeny of Acipenserinae. Mol. Phylogenet. Evol. 9: 141–155.

    Google Scholar 

  • Blacklidge, K.H. & C.A. Bidwell, 1993.Three ploidy levels indicated by genome quantification in Acipenseriformes of North America. J. Hered. 84: 27–430.

    Google Scholar 

  • Bowen, B.W. & J.C. Avise, 1990. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon: influence of zoogeographic factors and life-history patterns. Mar. Biol. 107: 371–381.

    Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M.J. Smith, 1992a. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics 132: 221–228.

    Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M. Smith, 1992b. Influence of Pleistocene glaciations and human intervention upon mitochondrial DNA diversity in white sturgeon (Acipenser transmontanus) populations. Can. J. Fish. Aquat. Sci. 49: 358–367.

    Google Scholar 

  • Brown, J.R., K. Beckenbach, A.T. Beckenbach & M.J. Smith, 1996. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142: 525–535.

    Google Scholar 

  • Buroker, N.E., J.R. Brown, T.A. Gilbert, P.J. O'Hara, A.T. Beckenbach, W.K. Thomas & M.J. Smith, 1990. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124: 157–163.

    Google Scholar 

  • Burtzev, J.A., J. Nikoljukin & E.V. Serebryakova, 1976. Karyology of the Acipenseridae family in relation to the hybridization and taxonomy problems. Acta Biol. Jugosl. Ser. Ichthyol. 8: 27–34.

    Google Scholar 

  • Campton, D.E., A.L. Bass, F.A. Chapman & B.W. Bowen, 2000. Genetic distinction of pallid, shovelnose, and Alabama sturgeon: emerging species and the US endangered species act.Conserv. Genet. 1: 17–32.

    Google Scholar 

  • Carlson, D.M., M.K. Kettler, S.E. Fisher & G.S. Whitt, 1982. Low genetic variability in paddlefish populations. Copeia 1982: 721–725.

    Google Scholar 

  • Carvalho, G.R. & L. Hauser, 1995. Molecular genetics and the stock concept in fisheries, pp. 55–79 in Molecular Genetics of Fishes, edited by G.R. Carvalho & T.J. Pitcher. Chapman & Hall, London, UK.

    Google Scholar 

  • Comincini, S., M. Lanfredi, R. Rossi & F. Fontana, 1998. Use of RAPD markers to determine the genetic relationships among sturgeons (Acipenseridae, Pisces). Fish. Sci. 64: 35–38.

    Google Scholar 

  • De La Herrán, R., F. Fontana, M. Lanfredi, L. Congiu, M. Leis, R. Rossi, C. Ruiz Rejón, M. Ruiz Rejón & M.A Garrido-Ramos, 2001. Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol. Biol. Evol. 18: 432–436.

    Google Scholar 

  • DeSalle, R. & V.J. Birstein, 1996. PCR identification of black caviar. Nature 381: 197–198.

    Google Scholar 

  • Dingerkus, G. & W.M. Howell, 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842–844.

    Google Scholar 

  • Doukakis, P., V.J. Birstein, G.I. Ruban & R. DeSalle, 1999. Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A. stellatus. Mol. Ecol. 8: 117–127.

    Google Scholar 

  • Ferguson, M.M., L. Bernatchez, M. Gatt, B.R. Konkle, S. Lee, M.L. Malott & R.S. McKinley, 1993. Distribution of mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the Moose river basin, Ontario Canada. J. Fish. Biol. 43: 91–101.

    Google Scholar 

  • Findeis, E.K., 1997. Osteology and phylogenetic relationships of recent sturgeons. Environ. Biol. Fish. 48: 73–126.

    Google Scholar 

  • Flajšhans, M. & V. Vajcová, 2000. Odd ploidy levels in sturgeon suggest a backcross of interspecific hexaploid sturgeon hybrids to evolutionary tetraploid and/or octaploid parental species. Folia Zool. 49(2): 133–138.

    Google Scholar 

  • Fontana, F., 1976. Nuclear DNA content and cytometric of erythrocytes of Huso huso L., Acipenser sturio L. and Acipenser naccarii Bonaparte. Caryologia 29: 127–138.

    Google Scholar 

  • Fontana, F., 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888–892.

    Google Scholar 

  • Fontana, F. & G. Colombo, 1974. The chromosomes of Italian sturgeons. Experientia 30: 739–742.

    Google Scholar 

  • Fontana, F., D. Jankovic & S. Zivkovic, 1975. Somatic chromosome of Acipenser ruthenus L. Arch. Biol. nauka, Beograd 27: 33–35.

    Google Scholar 

  • Fontana, F., M. Lanfredi, R. Rossi, P. Bronzi & G. Arlati, 1996. Karyotypic characterization of Acipenser gueldenstaedtii with C-, AgNO3, and fluorescence banding techniques. Ital. J. Zool. 63: 113–118.

    Google Scholar 

  • Fontana, F., R. Rossi, M. Lanfredi, G. Arlati & P. Bronzi, 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50: 91–95.

    Google Scholar 

  • Fontana, F., J. Tagliavini, L. Congiu, M. Lanfredi, M. Chicca, C. Laurenti & R. Rossi, 1998a. Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Mar. Biol. 132: 495–501.

    Google Scholar 

  • Fontana, F., M. Lanfredi, M. Chicca, V. Aiello & R. Rossi, 1998b. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chrom. Res. 6: 303–306.

    Google Scholar 

  • Fontana, F., M. Lanfredi, M. Chicca, L. Congiu, J, Tagliavini & R. Rossi, 1999. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes, Acipenseriformes). Genome 42: 1008–1012.

    Google Scholar 

  • Garrido-Ramos, M.A.,M.C. Soriguer, R. de la Herran, M. Jamilena, C. Ruiz Rejón, A. Domezain, J.A. Hernando & M. Ruiz Rejón, 1997. Morphometric and genetic analysis as proof of the existence of two sturgeon species in the Guadalquivir river. Mar. Biol. 129: 33–39.

    Google Scholar 

  • Grande, L. & W.E. Bemis, 1991. Osteology and phylogenetic relationships of fossil and recentpaddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J. Vert. Paleo. 11 (suppl. No 1): 121 pp.

  • Guenette, S., E. Rassart & R. Fortin, 1992. Morphological differentiation of lake sturgeon (Acipenser fulvescens) from the St. Lawrence river and Lac des Deux Montagnes (Quebec, Canada). Can. J. Fish. Aquat. Sci. 49: 1959–1965.

    Google Scholar 

  • Holcik, J. & L. Jedlicka, 1994. Geographical variation of some taxonomically important characters in fishes: the case of the bitterling Rhodeus sericeus. Environ. Biol. Fish. 41: 147–170.

    Google Scholar 

  • Howell, M.W., 1977. Visualization of ribosomal gene activity: silver stains proteins associated with rRNA transcribed from oocyte chromosomes. Chromosoma 62: 361–367.

    Google Scholar 

  • Jenneckens, I., J.N. Meyer, L. Debus, C. Pitra & A. Ludwig, 2000. Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baeri, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecol. Lett. 3(6): 503–508.

    Google Scholar 

  • Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S.F. Paabo, F.X. Villablanca & A.C. Wilson, 1989. Dynamics of mtDNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.

    Google Scholar 

  • Krieger J., P.A. Fuerst & T.M. Cavender, 2000. Phylogenetic relationships of the north american sturgeon (order Acipenseriformes) based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 1: 64–72.

    Google Scholar 

  • Lanfredi, M., L. Congiu, M.A. Garrido-Ramos, R. De La Herrán, M. Leis, M. Chicca, R. Rossi, J. Tagliavini, C. Ruiz Rejón, M. Ruiz Rejón & F. Fontana, 2001. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chrom. Res. 9: 47–52.

    Google Scholar 

  • Li, M.F., V. Marrayatt, C. Annand & P. Odense, 1985. Fish cell culture: two newly developed cell lines from Atlantic sturgeon (Acipenser oxyrinchus) and guppy (Poecilia reticulata). Can. J. Zool. 63: 2867–2874.

    Google Scholar 

  • Ludwig, A. & F. Kirschbaum, 1998. Comparison of mitochondrial DNA sequences between the European and the Adriatic sturgeon. J. Fish. Biol. 52: 1289–1291.

    Google Scholar 

  • Ludwig, A., B. May, L. Debus & I. Jenneckens, 2000. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 156: 1933–1947.

    Google Scholar 

  • May, B., C. C. Krueger & H. L. Kincaid, 1997.Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphyrhynchus. Can. J. Fish. Aquat. Sci. 54: 1542–1547.

    Google Scholar 

  • Mayden, R.L. & B.R. Kuhajda, 1996. Systematics, taxonomy, and conservation status of the endangered Alabama sturgeon Scaphirhynchus suttkusi William and Clemmer (Actinopterygii, Acipenseridae). Copeia 1996: 241–275.

    Google Scholar 

  • Medrano, L., G. Bernardi, J. Couturier, B. Dutrillaux & G. Bernardi, 1988. Chromosome banding and genome compartmentalization in fishes. Chromosoma 96: 178–183.

    Google Scholar 

  • Meyer, A., T.D. Kocher, P. Basasibwaki & A.C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553.

    Google Scholar 

  • Miracle, A.L. & D.E. Campton, 1995. Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, A. oxyrinchus desotoi. J. Hered. 86: 22–27.

    Google Scholar 

  • Mirsky, A.E. & H. Ris, 1951. The DNA content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451–462.

    Google Scholar 

  • Nowruzfashkhami, M.R., M. Pourkazemi & S. Baradarannoveiri, 2000. Chromosome study of persian sturgeon Acipenser persicus B. Cytologia 65: 197–202.

    Google Scholar 

  • Ohno, S., J. Muramoto, C. Stenius, L. Christian & W.A. Kitterell, 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 226: 35–40.

    Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Heildelberg, New York.

    Google Scholar 

  • Ong, T.L., J. Stabile, I. Wirgin & J.R. Waldman, 1996. Genetic divergence between Acipenser oxyrinchus oxyrinchus and A. o. desotoi as assessed by mitochondrial DNA sequencing analysis. Copeia 1996: 464–469.

    Google Scholar 

  • Patterson, C., 1982. Morphology and interrelationships of primitive actinopterygian fishes. Am. Zool. 22: 241–259.

    Google Scholar 

  • Pendás, A.M., P. Morán, J.L. Martinez & E. Garcia-Vazquez, 1995. Application of 5S in Atlantic salmon, brown trout, and in Atlantic salmon X brown trout hybrid identification. Mol. Ecol. 4: 275–276.

    Google Scholar 

  • Phelps, S.R. & F.W. Allendorf, 1983. Genetic identity of pallid and shovelnose sturgeon (Scaphirhynchus albus and S. platorynchus). Copeia 1983: 696–700.

    Google Scholar 

  • Pourkazemi, M., D.O.F. Skibinski & J.A. Beardmore, 1999. Application of mtDNA d-loop region for the study of Russian sturgeon population structure from Iranian coastline of the Caspian Sea. J. Appl. Ichtyol. 15: 23–28.

    Google Scholar 

  • Ráb, P., V.A. Arefjev & M. Rábova, 1996. C-banded karyotype of the sterlet, Acipenser ruthenus, from the Danub river. Sturg. Quart. 4(4): 10–12.

    Google Scholar 

  • Rehbein, H., C. Gonzales-Sotelo, R. Perez-Martin, J. Quinteiro, M. Rey-Mendez, S. Pryde, I.M. Mackie & T. Santos, 1999. Differentiation of sturgeon caviar by single strand conformation polymorphism (PCR-SSCP) analysis. Archiv für Lebensmittelhygiene 50: 13–17.

    Google Scholar 

  • Rochard, E., P. Williot, G. Castelnaud & M. Lepage, 1991. Elements de systematique et de biologie des populations sauvages d'esturgeons, pp. 475–507, in Acipenser, edited by P. Williot. Cemagref Publication.

  • Schmid, M. & M. Guttenbach, 1988. Evolutionary diversity of reverse fluorescent chromosome bands in vertebrates. Chromosoma 97: 101–114.

    Google Scholar 

  • Schweizer, D., 1976. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324.

    Google Scholar 

  • Serebryakova, E.V., 1972. Some data on the chromosome complexes in Acipenseridae, pp. 98–106 in Genetics, Selection, and Hybridization of Fish, edited by B.I. Cherfas (Translated from Russian by Israel Program for Scientific Translations). Keter Press Binding: Wiener Bindery Ltd. Jerusalem.

    Google Scholar 

  • Sola, L., C. Cordisco, S. Bressanello & S. Cataudella, 1994. Cytogenetic characterization of the North American white sturgeon Acipenser transmontanus (Pisces, Acipenseridae). Proc. VIII Congr.SEI: 64–65.

  • Stabile, J., J.R. Waldman, F. Parauka & I Wirgin, 1996. Stock structure and home fidelity in Gulf of Mexico sturgeon (A. oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA. Genetics 144: 767–775.

    Google Scholar 

  • Suciu, R. & C. Ene, 1996. Kariological study of the stellate sturgeon, Acipenser stellatus,from the Danube river. Sturg. Quart. 4: 14–15.

    Google Scholar 

  • Tagliavini, J., P. Williot, L. Congiu, M. Chicca, M. Lanfredi, R. Rossi & F. Fontana, 1999. Molecular cytogenetic analysis of the karyotype of the European Atlantic sturgeon, Acipenser sturio. Heredity 83: 520–525.

    Google Scholar 

  • Van Eenennaam, A.L., J.D. Murray & J.F. Medrano, 1998. Mitotic analysis of the North American white sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome 41: 266–271.

    Google Scholar 

  • Van Eenennaam, A.L., J.D. Murray & J.F. Medrano, 1999. Karyotype of the American green sturgeon. T. Am. Fish. Soc. 128: 175–177.

    Google Scholar 

  • Vasil'ev, V.P., L.I. Sokolov & E.V. Serebryakova, 1980. Karyotype of the Siberian sturgeon Acipenser baerii Brandt from the Lena River and some questions of the acipenserid karyotypic evolution. Vopr. Ikhtiol. 23: 814–822.

    Google Scholar 

  • Vasil'ev, V.P., 1985. Evolutionary Karyology of Fishes, edited by V.N. Orlov. Moskov, USSR: Nauka.

  • Vialli, M., 1957. Volume et contenu en ADN par noyau. Exptl. Cell. Res. Suppl. 4: 284–293.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman & M. Kuiper, 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414.

    Google Scholar 

  • Waldman, J.R., J.T. Hart & I.I. Wirgin, 1996. Stock composition of the New York bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. T. Am. Fish. Soc. 125: 364–371.

    Google Scholar 

  • Wichman, H.A., C.T. Payne, O.A. Ryder, M.J. Hamilton, M. Maltbie & R.J. Baker, 1991. Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J. Hered. 82: 369–377.

    Google Scholar 

  • Wolf, C., P. Hubner & J. Luthy, 1999. Differentiation of sturgeon species by PCR-RFLP. Food Res. Int. 31: 699–705.

    Google Scholar 

  • Yu, X., T. Zhou, K. Li, Y. Li & M. Zhou, 1987. On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica 72: 225–236.

    Google Scholar 

  • Zhang, S., Y. Zhang, X. Zheng, Y. Chen, H. Deng, D. Wang, Q. Wie, Y. Zhang, L. Nie & Q. Wu, 2000. Molecular phylogenetic systematics of twelve species of Acipenseriformes based on mtDNA ND4L-ND4 gene sequence analysis. Sci. China(C) 43: 129–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, F., Tagliavini, J. & Congiu, L. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica 111, 359–373 (2001). https://doi.org/10.1023/A:1013711919443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013711919443

Navigation