Skip to main content
Log in

Telomere length measurement by Q-FISH

  • Published:
Methods in Cell Science

Abstract

Telomeres are essential functional elements of eukaryotic chromosomes involved in genome stability maintenance. The most important indicator of correct telomere function is telomere length maintenance within the range typical for each species. Telomere length can be estimated by the classical methodology based on Southern blot. However, this methodology is relatively crude and can provide estimate of average telomere length only. To overcome disadvantages of classical telomere length estimate, a new technique termed Q-FISH hasbeen invented. Q-FISH provides estimate of telomere length in each individual chromosome with the resolution of 200 base pairs. In addition, Q-FISH may be used to estimate telomere length in species containing interstitial telomeric sites in their genomes. The classical methodology is non-informative in these cases. Finally, Q-FISH has been essential in estimating telomere length in the mouse, a species with ultra-long telomeres diffcult to measure using classical methods. Principles of Q-FISH and its applications are briefly described in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed S, Hodgkin J (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403: 159–164.

    Google Scholar 

  2. Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH (1999). DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Aca. Sci USA 96: 14899–14904.

    Google Scholar 

  3. Biessman H, Mason JM (1997). Telomere maintenance without telomerase. Chromosoma 106: 63–69.

    Google Scholar 

  4. Blasco MA, Lee H, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Google Scholar 

  5. Counter CM, Avillion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921–1929.

    Google Scholar 

  6. d'Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP (1999). Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 23: 76–80.

    Google Scholar 

  7. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange (1999). Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    Google Scholar 

  8. Hande P, Slijepcevic P, Silver A, Bouffler S, van Buul P, Bryant P, Lansdorp P (1999). Elongated telomeres in scid mice. Genomics 56: 221–223.

    Google Scholar 

  9. Harley C (1991). Telomere loss: Mitotic clock or genetic time bomb? Mutat Res 256: 271–282.

    Google Scholar 

  10. Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991). Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88: 9051–9055.

    Google Scholar 

  11. Kim SH, Kaminker P, Campisi J (1999). TIN2, a new regulator of telomere length in human cells. Nat Genet. 23: 405–412.

    Google Scholar 

  12. Li B, Oestreich S, de Lange T (2000). Identification of human Rap1: implications for telomere evolution. Cell 101: 471–483.

    Google Scholar 

  13. Makarov VL, Hirose Y, Langmore JP (1997). Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88: 657–666.

    Google Scholar 

  14. Marcand S, Gilson E, Shore D (1997). A protein counting mechanism for telomere length regulation in yeast. Science 275: 986–990.

    Google Scholar 

  15. Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM (1999). Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97: 621–633.

    Google Scholar 

  16. Mills KD, Sinclair A, Guarente L (1999). MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97: 609–629.

    Google Scholar 

  17. Olovnikov A (1973). A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41: 181–190.

    Google Scholar 

  18. Poon SS, Martens UM, Ward RK, Lansdorp PM (1999). Telomere length measurements using digital fluorescence microscopy. Cytometry 36: 267–278.

    Google Scholar 

  19. Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16: 743–747.

    Google Scholar 

  20. Samper E, Goytisolo FA, Slijepcevic P, van Buul PW, Blasco MA (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Reports 1: 244–252.

    Google Scholar 

  21. Slijepcevic P, Xiao Y, Dominguez Y, Natarajan AT (1996). Spontaneous and radiation-induced chromosomal breakage at interstitial telomeric sites. Chromosoma 104: 596–604.

    Google Scholar 

  22. Slijepcevic P, Hande MP, Bouffler SD, Lansdorp P, Bryant PE (1997). Telomere length, chromatin structure and chromosome fusigenic potential. Chromosoma 106: 413–421.

    Google Scholar 

  23. Slijepcevic P, Hande MP (1999). Chinese hamster telomeres are comparable in size to mouse telomeres. Cytogenet Cell Genet 85: 196–199.

    Google Scholar 

  24. Smith S, Giriat I, Schmitt A, de Lange T (1998). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484–1487.

    Google Scholar 

  25. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, deLange T (2000). Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20: 1659–1668.

    Google Scholar 

  26. Wellinger RJ, Ethier K, Labrecque P, Zakian VA (1996). Evidence for a new step in telomere maintenance. Cell 85: 423–433.

    Google Scholar 

  27. Zakian V (1995). Telomeres: beginning to understand the end. Science 270: 1601–1607.

    Google Scholar 

  28. Zijlmans JMJM, Martens UM, Poon SSS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM (1997). Telomeres in the mouse have large interchromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 94: 7423–7428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slijepcevic, P. Telomere length measurement by Q-FISH. Methods Cell Sci 23, 17–22 (2001). https://doi.org/10.1023/A:1013177128297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013177128297

Navigation