Skip to main content
Log in

Drug Resistance in Melanoma: Mechanisms, Apoptosis, and New Potential Therapeutic Targets

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Melanoma is the most aggressive form of skin cancer. Patients with advanced disease, such as lymph node involvement and distant metastases, have 5-year survival rates of 50% and 10–20%, respectively. This poor prognosis largely results from resistance to conventional chemotherapy, namely cytotoxic drugs. The basis for drug resistance in melanoma is most likely dysregulation of apoptosis, although other mechanisms including drug transport, detoxification, and enhanced DNA repair may also play a role. Defects at multiple levels and in both major apoptotic pathways have been described in melanoma. Our laboratory has identified an inhibitor of apoptosis, termed survivin, that is expressed in melanoma and required for maintenance of melanoma cell viability. Targeting of survivin and other apoptotic regulators increases the sensitivity of melanoma cells to cytotoxic drugs, and may provide a promising new therapeutic approach to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A,Devesa SS,Hartge P,Tucker MA: Recent trends in cutaneous melanoma incidence among whites in the united states. J Natl Cancer Inst 93: 678–683, 2001

    Google Scholar 

  2. Rigel DS,Carucci JA: Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin 50: 215–236, 2000

    Google Scholar 

  3. Breslow A: The surgical treatment of stage I cutaneous melanoma. Cancer Treat Rev 5: 195–198, 1978

    Google Scholar 

  4. Buzzell RA,Zitelli JA: Favorable prognostic factors in recurrent and metastatic melanoma. J Am Acad Dermatol 34: 798–803, 1996

    Google Scholar 

  5. Walsh P,Gibbs P,Gonzalez R: Newer strategies for effective evaluation of primary melanoma and treatment of stages III and IV disease. J Am Acad Dermatol 42: 480–489, 2000

    Google Scholar 

  6. Anderson CM,Buzaid AC,Legha SS: Systemic treatments for advanced cutaneous melanoma. Oncology (Huntingt) 9: 1149–1158, 1995

    Google Scholar 

  7. Becker JC,Kampgen E,Brocker E: Classical chemotherapy for metastatic melanoma. Clin Exp Dermatol 25: 503–508, 2000

    Google Scholar 

  8. Lakhani S,Selby P,Bliss JM,Perren TJ,Gore ME,McElwain TJ: Chemotherapy for malignant melanoma: combinations and high doses produce more responses without survival benefit. Br J Cancer 61: 330–334, 1990

    Google Scholar 

  9. Osieka R: Studies on drug resistance in a human melanoma xenograft system. Cancer Treat Rev 11(Suppl A): 85–98, 1984

    Google Scholar 

  10. Hamburger AW,Salmon SE: Primary bioassay of human tumor stem cells. Science 197: 461–463, 1977

    Google Scholar 

  11. Schadendorf D,Worm M,Algermissen B,Kohlmus CM,Czarnetzki BM: Chemosensitivity testing of human malignant melanoma.Aretrospective analysis of clinical response and in vitro drug sensitivity. Cancer 73: 103–108, 1994

    Google Scholar 

  12. Grottke C,Mantwill K,Dietel M,Schadendorf D,Lage H: Identification of differentially expressed genes in human melanoma cells with acquired resistance to various antineoplastic drugs. Int J Cancer 88: 535–546, 2000

    Google Scholar 

  13. Schadendorf D,Herfordt R,Czarnetzki BM: P-glycoprotein expression in primary and metastatic malignant melanoma. Br J Dermatol 132: 551–555, 1995

    Google Scholar 

  14. Berger W,Elbling L,Minai-Pour M,Vetterlein M,Pirker R,Kokoschka EM,Micksche M: Intrinsic MDR-1 gene and P-glycoprotein expression in human melanoma cell lines. Int J Cancer 59: 717-723, 1994

    Google Scholar 

  15. Schadendorf D,Makki A,Stahr C,van Dyck A,Wanner R,Scheffer GL,Flens MJ,Scheper R,Henz BM: Membrane transport proteins associated with drug resistance expressed in human melanoma. Am J Pathol 147: 1545–1552, 1995

    Google Scholar 

  16. Ichihashi N,Kitajima Y: Chemotherapy induces or increases expression of multidrug resistance-associated protein in malignant melanoma cells. Br J Dermatol 144: 745–750, 2001

    Google Scholar 

  17. Mannervik B,Castro VM,Danielson UH,Tahir MK,Hansson J,Ringborg U: Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis 8: 1929–1932, 1987

    Google Scholar 

  18. Moral A,Palou J,Lafuente A,Molina R,Piulachs J,Castel T,Trias M: Immunohistochemical study of alpha, mu and pi class glutathione S transferase expression in malignant melanoma. Br J Dermatol 136: 345–350, 1997

    Google Scholar 

  19. Schadendorf D,Jurgovsky K,Kohlmus CM,Czarnetzki BM: Glutathione and related enzymes in tumor progression and metastases of human melanoma. J Invest Dermatol 105: 109–112, 1995

    Google Scholar 

  20. Pendyala L,Perez R,Weinstein A,Zdanowicz J,Creaven PJ: Effect of glutathione depletion on the cytotoxicity of cisplatin and iproplatin in a human melanoma cell line. Cancer Chemother Pharmacol 40: 38–44, 1997

    Google Scholar 

  21. Lynch BJ,Komaromy-Hiller G,Bronstein IB,Holden JA: Expression of DNA topoisomerase I, DNA topoisomerase II-alpha, and p53 in metastatic malignant melanoma. Hum Pathol 29: 1240–1245, 1998

    Google Scholar 

  22. Mu XC,Tran TA,Ross JS,Carlson JA: Topoisomerase II-alpha expression in melanocytic nevi and malignant melanoma. J Cutan Pathol 27: 242–248, 2000

    Google Scholar 

  23. Lage H,Helmbach H,Dietel M,Schadendorf D: Modulationof DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 82: 488–491, 2000

    Google Scholar 

  24. Campain JA,Slovak ML,Schoenlein PV,Popescu NC,Gottesman MM,Pastan I: Acquisition of multiple copies of a mutant topoisomerase IIá allele by chromosome 17 aneuploidy is associated with etoposide resistance in human melanoma cell lines. Somat Cell Mol Genet 21: 451–471, 1995

    Google Scholar 

  25. Satherley K,de Souza L,Neale MH,Alexander RA,Myatt N,Foss AJ,Hungerford JL,Hickson ID,Cree IA: Relationship between expression of topoisomerase II isoforms and chemosensitivity in choroidal melanoma. J Pathol 192: 174–181, 2000

    Google Scholar 

  26. Runger TM,Emmert S,Schadendorf D,Diem C,Epe B,Hellfritsch D: Alterations of DNA repair in melanoma cell lines resistant to cisplatin, fotemustine, or etoposide. J Invest Dermatol 114: 34–39, 2000

    Google Scholar 

  27. Spiro T,Liu L,Gerson S: New cytotoxic agents for the treatment of metastatic malignant melanoma:Temozolomide and related alkylating agents in combination with guanine analogues to abrogate drug resistance. Forum (Genova) 10: 274–285, 2000

    Google Scholar 

  28. Hansson J,Martenhed G,Egyhazi S,Tani E,Platz A: Analysis of O6-methylguanine-DNA methyltransferase mRNA in fine needle biopsies from human melanoma metastases by reverse transcription and polymerase chain reaction. Eur J Cancer 32A: 2319–2326, 1996

    Google Scholar 

  29. Christmann M,Pick M,Lage H,Schadendorf D,Kaina B: Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. Int J Cancer 92: 123–129, 2001

    Google Scholar 

  30. Middleton MR,Lunn JM,Morris C,Rustin G,Wedge SR,Brampton MH,Lind MJ,Lee SM,Newell DR,Bleehen NM,Newlands ES,Calvert AH,Margison GP,Thatcher N: O6-methylguanine-DNA methyltransferase in pretreatment tumour biopsies as a predictor of response to temozolomide in melanoma. Br J Cancer 78: 1199–1202, 1998

    Google Scholar 

  31. Jansen B,Inoue SA,Wadl H,Eichler HG,Wolff K,Van Elsas A,Schrier PI,Pehamberger H: N-ras oncogene expression changes the growth characteristics of human melanoma in two independent SCID-hu mouse models. Int J Cancer 67: 821–825, 1996

    Google Scholar 

  32. Jansen B,Schlagbauer-Wadl H,Eichler HG,Wolff K,van Elsas A,Schrier PI,Pehamberger H: Activated N-ras contributes to the chemoresistance of human melanoma in severe combined immunodeficiency (SCID) mice by blocking apoptosis. Cancer Res 57: 362–365, 1997

    Google Scholar 

  33. Borner C,Schlagbauer Wadl H,Fellay I,Selzer E,Polterauer P,Jansen B: Mutated N-ras upregulates Bcl-2 in human melanoma in vitro and in SCID mice. Melanoma Res 9: 347–350, 1999

    Google Scholar 

  34. Fisher DE: Apoptosis in cancer therapy: Crossing the threshold. Cell 78: 539–542, 1994

    Google Scholar 

  35. Li G,Tang L,Zhou X,Tron V,Ho V: Chemotherapy-induced apoptosis in melanoma cells is p53 dependent. Melanoma Res 8: 17–23, 1998

    Google Scholar 

  36. Mooney EE,Ruis Peris JM,O'Neill A,Sweeney EC: Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J Clin Pathol 48: 242–244, 1995

    Google Scholar 

  37. Staunton MJ,Gaffney EF: Tumor type is a determinant of susceptibility to apoptosis. Am J Clin Pathol 103: 300–307, 1995

    Google Scholar 

  38. Glinsky GV,Glinsky VV,Ivanova AB,Hueser CJ: Apoptosis and metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett 115: 185–193, 1997

    Google Scholar 

  39. Alanko T,Rosenberg M,Saksela O: FGF expression allows nevus cells to survive in three-dimensional collagen gel under conditions that induce apoptosis in normal human melanocytes. J Invest Dermatol 113: 111–116, 1999

    Google Scholar 

  40. Ashkenazi A,Dixit VM: Death receptors: Signaling and modulation. Science 281: 1305–1308, 1998

    Google Scholar 

  41. Thornberry NA: Caspases: Key mediators of apoptosis. Chem Biol 5: 97–103, 1998

    Google Scholar 

  42. Zou H,Henzel WJ,Liu X,Lutschg A,Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413, 1997

    Google Scholar 

  43. Green DR,Reed JC: Mitochondria and apoptosis. Science 281: 1309–1312, 1998

    Google Scholar 

  44. Thornberry NA,Lazebnik Y: Caspases: Enemies within. Science 281: 1312–1316, 1998

    Google Scholar 

  45. French LE,Tschopp J: Inhibition of death receptor signaling by FLICE-inhibitory prote in as a mechanism for immune escape of tumors. J Exp Med 190: 891–894, 1999

    Google Scholar 

  46. Adams JM,Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322–1326, 1998

    Google Scholar 

  47. Green DR: Apoptotic pathways: The roads to ruin. Cell 94: 695–698, 1998

    Google Scholar 

  48. Deveraux QL,Reed JC: IAP family proteins-suppressors of apoptosis. Genes Dev 13: 239–252, 1999

    Google Scholar 

  49. LaCasse EC,Baird S,Korneluk RG,MacKenzie AE: The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247–3259, 1998

    Google Scholar 

  50. Deveraux QL,Roy N,Stennicke HR,Van Arsdale T,Zhou Q,Srinivasula SM,Alnemri ES,Salvesen GS,Reed JC: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17: 2215–2223, 1998

    Google Scholar 

  51. Deveraux QL,Leo E,Stennicke HR,Welsh K,Salvesen GS,Reed JC: Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18: 5242–5251, 1999

    Google Scholar 

  52. O'Connor DS,Grossman D,Plescia J,Li F,Zhang H,Villa A,Tognin S,Marchisio PC,Altieri DC: Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 97: 13103–13107, 2000

    Google Scholar 

  53. Deveraux QL,Takahashi R,Salvesen GS,Reed JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388: 300–304, 1997

    Google Scholar 

  54. Roy N,Deveraux QL,Takahashi R,Salvesen GS,Reed JC: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16: 6914–6925, 1997

    Google Scholar 

  55. Tamm I,Wang Y,Sausville E,Scudiero DA,Vigna N,Oltersdorf T,Reed JC: IAP-family prote in survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58: 5315–5320, 1998

    Google Scholar 

  56. Verhagen AM,Ekert PG,Pakusch M,Silke J,Connolly LM,Reid GE,Moritz RL,Simpson RJ,Vaux DL: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53, 2000

    Google Scholar 

  57. Du C,Fang M,Li Y,Li L,Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42, 2000

    Google Scholar 

  58. Ambrosini G,Adida C,Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3: 917–921, 1997

    Google Scholar 

  59. Adida C,Crotty PL,McGrath J,Berrebi D,Diebold J,Altieri DC: Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152: 43–49, 1998

    Google Scholar 

  60. Velculescu VE,Madden SL,Zhang L,Lash AE,Yu J,Rago C,Lal A,Wang CJ,Beaudry GA,Ciriello KM,Cook BP,Dufault MR,Ferguson AT,Gao Y,He TC,Hermeking H,Hiraldo SK,Hwang PM,Lopez MA,Luderer HF,Mathews B,Petroziello JM,Polyak K,Zawel L,Kinzler KW: Analysis of human transcriptomes. Nat Genet 23: 387–388, 1999

    Google Scholar 

  61. Li F,Ambrosini G,Chu EY,Plescia J,Tognin S,Marchisio PC,Altieri DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584, 1998

    Google Scholar 

  62. Li F,Ackermann EJ,Bennett CF,Rothermel AL,Plescia J,Tognin S,Villa A,Marchisio PC,Altieri DC: Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1: 461–466, 1999

    Google Scholar 

  63. Banks DP,Plescia J,Altieri DC,Chen J,Rosenberg SH,Zhang H,Ng SC: Survivin does not inhibit caspase-3 activity. Blood 96: 4002–4003, 2000

    Google Scholar 

  64. Griffith TS,Chin WA,Jackson GC,Lynch DH,Kubin MZ: Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161: 2833–2840, 1998

    Google Scholar 

  65. Thomas WD,Hersey P: TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 161: 2195–2200, 1998

    Google Scholar 

  66. Ugurel S,Seiter S,Rappl G,Stark A,Tilgen W,Reinhold U: Heterogenous susceptibility to CD95-induced apoptosis in melanoma cells correlates with bcl-2 and bcl-X expression and is sensitive to modulation by interferon-gamma. Int J Cancer 82: 727–736, 1999

    Google Scholar 

  67. Zhang XD,Franco A,Myers K,Gray C,Nguyen T,Hersey P: Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory prote in expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59: 2747–2753, 1999

    Google Scholar 

  68. Nguyen T,Zhang XD,Hersey P: Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Clin Cancer Res 7: 966s-973s, 2001

    Google Scholar 

  69. Raisova M,Bektas M,Wieder T,Daniel P,Eberle J,Orfanos CE,Geilen CC: Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release. FEBS Lett 473: 27–32, 2000

    Google Scholar 

  70. Irmler M,Thome M,Hahne M,Schneider P,Hofmann K,Steiner V,Bodmer JL,Schroter M,Burns K,Mattmann C,Rimoldi D,French LE,Tschopp J: Inhibition of death receptor signals by cellular FLIP. Nature 388: 190–195, 1997

    Google Scholar 

  71. Collins KA,White WL: Intercellular adhesion molecule 1 (ICAM-1) and bcl-2 are differentially expressed in early evolving malignant melanoma. Am J Dermatopathol 17: 429–438, 1995

    Google Scholar 

  72. Cerroni L,Soyer HP,Kerl H: bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi. Am J Dermatopathol 17: 7–11, 1995

    Google Scholar 

  73. Selzer E,Schlagbauer-Wadl H,Okamoto I,Pehamberger H,Potter R,Jansen B: Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 8: 197–203, 1998

    Google Scholar 

  74. Tang L,Tron VA,Reed JC,Mah KJ,Krajewska M,Li G,Zhou X,Ho VC,Trotter MJ: Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 4: 1865–1871, 1998

    Google Scholar 

  75. Mooy CM,Luyten GP,de Jong PT,Luider TM,Stijnen T,van de Ham F,van Vroonhoven CC,Bosman FT: Immunohistochemical and prognostic analysis of apoptosis and proliferation in uveal melanoma. Am J Pathol 147: 1097–1104, 1995

    Google Scholar 

  76. Lowe SW,Ruley HE,Jacks T,Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  77. Chin L,Merlino G,DePinho RA: Malignant melanoma: modern black plague and genetic black box. Genes Dev 12: 3467–3481, 1998

    Google Scholar 

  78. Soengas MS,Capodieci P,Polsky D,Mora J,Esteller M,Opitz-Araya X,McCombie R,Herman JG,Gerald WL,Lazebnik YA,Cordon-Cardo C,Lowe SW: Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409: 207–211, 2001

    Google Scholar 

  79. Soengas MS,Alarcon RM,Yoshida H,Giaccia AJ,Hakem R,Mak TW,Lowe SW: Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284: 156–159, 1999

    Google Scholar 

  80. Grossman D,McNiff JM,Li F,Altieri DC: Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol 113: 1076–1081, 1999

    Google Scholar 

  81. Vucic D,Stennicke HR,Pisabarro MT,Salvesen GS,Dixit VM: ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10: 1359–1366, 2000

    Google Scholar 

  82. Kasof GM,Gomes BC: Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276: 3238–3246, 2001

    Google Scholar 

  83. Grossman D,Kim PJ,Schechner JS,Altieri DC: Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA 98: 635–640, 2001

    Google Scholar 

  84. Olie RA,Simoes-Wust AP,Baumann B,Leech SH,Fabbro D,Stahel RA,Zangemeister-Wittke U: A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 60: 2805–2809, 2000

    Google Scholar 

  85. Rieber MS,Zangemeister-Wittke U,Rieber M: p53-independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. Clin Cancer Res 7: 1446–1451, 2001

    Google Scholar 

  86. Jansen B,Schlagbauer-Wadl H,Brown BD,Bryan RN,van Elsas A,Muller M,Wolff K,Eichler HG,Pehamberger H: bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 4: 232–234, 1998

    Google Scholar 

  87. Jansen B,Wacheck V,Heere-Ress E,Schlagbauer-Wadl H,Hoeller C,Lucas T,Hoermann M,Hollenstein U,Wolff K,Pehamberger H: Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356: 1728–1733, 2000

    Google Scholar 

  88. Jansen B,Schlagbauer-Wadl H,Kahr H,Heere-Ress E,Mayer BX,Eichler H,Pehamberger H,Gana-Weisz M,Ben-David E,Kloog Y,Wolff K: Novel Ras antagonist blocks human melanoma growth. Proc Natl Acad Sci USA 96: 14019–14024, 1999

    Google Scholar 

  89. Jansen B,Wadl H,Inoue SA,Trulzsch B,Selzer E,Duchene M,Eichler HG,Wolff K,Pehamberger H: Phosphorothioate oligonucleotides reduce melanoma growth in a SCID-hu mouse model by a nonantisense mechanism. Antisense Res Dev 5: 271-277, 1995

    Google Scholar 

  90. Griffith TS,Anderson RD,Davidson BL,Williams RD,Ratliff TL: Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 165: 2886–2894, 2000

    Google Scholar 

  91. Bakker TR,Reed D,Renno T,Jongeneel CV: Efficient adenoviral transfer of NF-kappaB inhibitor sensitizes melanoma to tumor necrosis factor-mediated apoptosis. Int J Cancer 80: 320–323, 1999

    Google Scholar 

  92. Franco AV,Zhang XD,Van Berkel E,Sanders JE,Zhang XY,Thomas WD,Nguyen T,Hersey P: The role of NF-kappab in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 166: 5337–5345, 2001

    Google Scholar 

  93. Cirielli C,Riccioni T,Yang C,Pili R,Gloe T,Chang J,Inyaku K,Passaniti A,as Capogrossi MC: Adenovirusmediated gene transfer of wild-type p53 results in melanoma cell apoptosis in vitro and in vivo. Int J Cancer 63: 673–679, 1995

    Google Scholar 

  94. Mecchia M,Matarrese P,Malorni W,D'Agostino G,Sestili P,Santini SM,Gauzzi MC,Venditti M,Mazzocchi A,Parmiani G,Belardelli F,Ferrantini M: Type I consensus interferon (CIFN) gene transfer into human melanoma cells up-regulates p53 and enhances cisplatin-induced apoptosis: Implications for new therapeutic strategies with IFN-alpha. Gene Ther 7: 167–179, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, D., Altieri, D.C. Drug Resistance in Melanoma: Mechanisms, Apoptosis, and New Potential Therapeutic Targets. Cancer Metastasis Rev 20, 3–11 (2001). https://doi.org/10.1023/A:1013123532723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013123532723

Navigation