Skip to main content
Log in

Regeneration in Gap Models: Priority Issues for Studying Forest Responses to Climate Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Recruitment algorithms in forest gap models are examined withparticular regard to their suitability for simulating forestecosystem responses to a changing climate. The traditional formulation of recruitment is found limiting in three areas. First, the aggregation of different regeneration stages (seedproduction, dispersal, storage, germination and seedling establishment) is likely to result in less accurate predictionsof responses as compared to treating each stage separately. Second, the related assumptions that seeds of all species are uniformly available and that environmental conditions arehomogeneous, are likely to cause overestimates of future speciesdiversity and forest migration rates. Third, interactions between herbivores (ungulates and insect pests) and forest vegetation are a big unknown with potentially serious impactsin many regions. Possible strategies for developing better gapmodel representations for the climate-sensitive aspects of eachof these key areas are discussed. A working example of a relatively new model that addresses some of these limitations is also presented for each case. We conclude that better modelsof regeneration processes are desirable for predicting effectsof climate change, but that it is presently impossible to determine what improvements can be expected without carrying outrigorous tests for each new formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beatty, S.W.: 1984, ‘Influence of Microtopography and Canopy Species on Spatial Patterns of Forest Understorey Plants’, Ecology 65, 1406–1419.

    Google Scholar 

  • Begon, M., Harper, J. L., and Townsend, C. R.: 1996, Ecology: Individuals, Populations and Communities, Third Edition, Blackwell Science, Oxford, p. 1068.

    Google Scholar 

  • Bennet, K. D.: 1983, ‘Postglacial Population Expansion of Forest Trees in Norfolk, U.K.’, Nature 303, 164–167.

    Google Scholar 

  • Bergeron, Y. and Leduc, A.: 1998, ‘Relationships between Change in Fire Frequency and Spruce Budworm Outbreak Severity in the South-Eastern Canadian Boreal Forest’, Journal of Vegetation Science 9, 492–500.

    Google Scholar 

  • Bergeron, Y., Morin, H., Leduc, A., and Joyal, C.: 1995, ‘Balsam Fir Mortality following the Last Spruce Budworm Outbreak in Northwestern Quebec’, Can. J. Forest Res. 25, 1375–1384.

    Google Scholar 

  • Birks, H. J. B.: 1993, ‘Quaternary Paleoecology and Vegetation Science – Current Contributions and Possible Future Developments’, Reviews in Palaeobotany and Palynology 79, 153–177.

    Google Scholar 

  • Black, R. A. and Bliss, L. C.: 1980, ‘Reproductive Ecology of Picea mariana (Mill.) B.S.P., at Tree Line near Inuvik, Northwest Territories, Canada’, Ecol. Monogr. 50, 331–354.

    Google Scholar 

  • Bond, W. J. and Midgley, J. J.: 2001a, ‘Ecology of Sprouting inWoody Plants: the Persistence Niche’, Trends in Ecology and Evolution, 10, 45–51.

    Google Scholar 

  • Bond, W. J. and Midgley, G. F. A.: 2001b, ‘A Proposed CO2-Controlled Mechanism ofWoody Plant Invasion in Grasslands and Savannas’, Global Change Biology, in press.

  • Bossel, H. and Krieger, H.: 1991, ‘Simulation Model of Natural Tropical Forest Dynamics’, Ecol. Modelling 59, 37–71.

    Google Scholar 

  • Bossel, H. and Krieger, H.: 1994, ‘Simulation of Multi-Species Tropical Forest Dynamics using a Vertically and Horizontally Structured Model’, Forest Ecol. Manage. 69(1–3), 123–144.

    Google Scholar 

  • Botkin, D. B.: 1992, ‘GlobalWarming and Forests of the Great Lake States, an Example of the Use of Quantitative Projections in Policy Analysis’, in Schmandt, J. and Clarkson, J. (eds.), The Regions and Global Warming, Impacts and Response Strategies, Oxford University Press, New York, pp. 154–161.

    Google Scholar 

  • Botkin, D. B.: 1993, Forest Dynamics, an Ecological Model, Oxford University Press, Oxford.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972a, ‘Some Ecological Consequences of a Computer Model of Forest Growth’, J. Ecol. 60, 849–872.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972b, ‘Rationale, Limitations and Assumptions of a Northeastern Forest Growth Simulator’, IBMJournal of Research and Development 16, 101–116.

    Google Scholar 

  • Brown, K. R., Zobel, D. B., and Zasada, J. C.: 1988, ‘Seed Dispersal, Seedling Emergence, and Early Survival of Larix laricina (DuRoi) K. Koch in the Tanana Valley, Alaska’, Can. J. Forest Res. 18, 306–314.

    Google Scholar 

  • Brown, V. K., Gange A. C., and Gibson, C. W. D.: 1988, ‘Insect Herbivory and Vegetational Structure’, in Werger, M. J. A., van der Aart, P. J. M., During, H. J., and Verhoeven, J. T. A. (eds.), Plant Form and Vegetation Structure, Academic Publishing BV, The Hague, pp. 263–279.

    Google Scholar 

  • Bugmann, H.: 1996, ‘A Simplified Forest Model to Study Species Composition along Climate Gradients’, Ecology 77, 2055–2074.

    Google Scholar 

  • Bugmann, H.: 1997, ‘Sensitivity of Forests in the European Alps to Future Climatic Change’, Clim. Res. 8, 35–44.

    Google Scholar 

  • Bugmann, H.: 2001, ‘A Review of Forest Gap Models’, Clim. Change 51, 259–305.

    Google Scholar 

  • Bugmann, H., R. Grote, R., Lasch, P., Lindner, M., and Suckow, F.: 1997, ‘A New Forest Gap Model to Study The Effects of Environmental Change on Forest Structure and Functioning’, in Mohren, G. M. J., Kramer, K., and Sabaté, S. (eds.), Impacts of Global Change on Tree Physiology and Forest Ecosystems, Kluwer Academic Publishers, Dordrecht, pp. 255–261.

    Google Scholar 

  • Bugmann, H. K. M. and Solomon, A. M.: 2000, ‘Explaining Forest Composition and Biomass across Multiple Biogeographical Regions’, Ecol. Appl. 10, 95–114.

    Google Scholar 

  • Busing, R. T.: 1991, ‘A Spatial Model of Forest Dynamics’, Vegetatio 92, 167–191.

    Google Scholar 

  • Busing, R. T. and Clebsch, E. E. C.: 1987, ‘Application of a Spruce-Fir Forest Canopy Gap Model’, Forest Ecol. Manage. 20, 151–169.

    Google Scholar 

  • Cain, M. L., Damman, H., and Muir, A.: 1998, ‘Seed Dispersal and The Holocene Migration of Woodland Herbs’, Ecol. Monogr. 68, 325–347.

    Google Scholar 

  • Cannell, M. G. R. and Smith, R. I.: 1986, ‘ClimaticWarming, Spring Budburst and Frost Damage on Trees’, J. Appl. Ecol. 23, 177–191.

    Google Scholar 

  • Chambers, J. C. and MacMahon, J. A.: 1994, ‘A Day in the Life of a Seed: Movements and Fates of Seeds and their Implications for Natural and Managed Systems’, Ann. Rev. Ecol. Syst. 25, 263–292.

    Google Scholar 

  • Chikono, C. and Choinski, J. S. Jr.: 1992, ‘yThermotolerance Characteristics of Seeds from Geographically Isolated Populations of the African Tree Combretum apiculatum Sonder’, African J. Ecol. 30, 65–73.

    Google Scholar 

  • Chuine, I., Cour, P., and Rousseau, D. D.: 1999, ‘Selecting a Model to Predict the Timing of Flowering of Temperate Trees: Implications for Tree Phenology Modelling’, Plant, Cell Environ. 22, 1–13.

    Google Scholar 

  • Clark, J. S. and Ji, Y.: 1995, ‘Fecundity and Dispersal in Plant-Populations – Implications for Structure and Diversity’, Amer. Nat. 146, 72–111.

    Google Scholar 

  • Clark, J. S., Fastie, C., Hurtt, G., Jackson, S. T., Johnson, C., King, G. A., Lewis, M., Lynch, J., Pacala, S., Prentice, C., Schupp, E. W., Webb III, T., and Wyckoff, P.: 1998a, ‘Reid's Paradox of Rapid Plant Migration – Dispersal Theory and Interpretation of Paleoecological Records’, BioScience 48, 13–24.

    Google Scholar 

  • Clark, J. S., Macklin, E., and Wood, L.: 1998b, ‘Stages and Spatial Scales of Recruitment Limitation in Southern Appalachian Forests’, Ecol. Monogr. 68, 213–235.

    Google Scholar 

  • Clark, J. S., Silman, M., Kern, R., Macklin, E., and HilleRisLambers, J.: 1999, ‘Seed Dispersal Near and Far, Patterns Across Temperate and Tropical Forests’, Ecology 80, 1475–1494.

    Google Scholar 

  • Crawley, M. J.: 1983, The Dynamics of Animal-Plant Interactions, Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., Hanson, P. J., Irland, L. C., Lugo, A. E., Peterson, C. J., Simberloff, D., Swanson, F. J., Stocks, B. J., and Wotton, B. M.: 2001, ‘Disturbances, Agents of Forest Transformation under a Changing Climate’, BioScience 51, 723–734.

    Google Scholar 

  • Davidson, R. L.: 1996, ‘Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grasses and Clover’, Ann. Botany 33, 561–569.

    Google Scholar 

  • Davis, M. B.: 1983, ‘Holocene Vegetational History of The Eastern United States’, in Wright, H.E. (ed.), Late-Quaternary Environments of the United States, University of Minnesota, Minneapolis, pp. 166–181.

    Google Scholar 

  • Davis, M. B.: 1989, ‘Lags in Vegetation Response to Greenhouse Warming’, Clim. Change 15, 75–82.

    Google Scholar 

  • Davis, M. B., Woods, K. D., Webb, S. L., and Futyma, R. P.: 1986, ‘Dispersal versus Climate: Expansion of Fagus and Tsuga into the Upper Great Lakes’, Vegetatio 67, 93–103.

    Google Scholar 

  • Dyer, J. M.: 1995, ‘Assessment of Climatic Warming Using a Model of Forest Species Migration’, Ecol. Modelling 79, 199–219.

    Google Scholar 

  • Dyer, M. I. and Shugart, H. H.: 1992, ‘Multi-level Interactions Arising from Herbivory: A Simulation Analysis of Deciduous Forests Utilizing FORET’, Ecol. Appl. 2, 376–386.

    Google Scholar 

  • El Kassaby, Y. A., Chaisurisri, K., Edwards, D. G. W., and Taylor, D. W.: 1993, ‘Genetic Control of Germination Parameters of Douglas-Fir, Sitka Spruce,Western Redcedar, and Yellow-Cedar and its Impact on Container Nursery Production’, in Edwards, D. G.W. (ed.), Dormancy and Barriers to Germination, Proceedings of International Symposium of IUFRO Project Group P2.04-00, Victoria, B.C., pp. 37–42.

  • Ellenberg, H.: 1996, Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht [Vegetation of Central Europe including the Alps, in Ecological, Dynamic and Historical Context], 5th edn., Verlag Eugen Ulmer, p. 1095, in German.

  • Farmer, R. E. J.: 1997, Seed Ecophysiology of Temperate and Boreal Zone Forest Trees, St. Lucie Press, Delray Beach.

    Google Scholar 

  • Finegan, B.: 1984, ‘Forest Succession’, Nature 312, 109–114.

    Google Scholar 

  • Fitter A. H., Fitter R. S. R., Harris I. T. B., and Williamson M. H.: 1995, ‘Relationship between First Flowering Date and Temperature in The Flora of a Locality in Central England’, Func. Ecol. 9, 55–60.

    Google Scholar 

  • Fleming, R. A. and Volney, W. J. A.: 1995, ‘Effects of Climate Change on Insect Defoliator Population Processes in Canada's Boreal Forest: Some Plausible Scenarios’, Water Air Soil Pollut. 82, 445–454.

    Google Scholar 

  • Friend, A. D., Shugart, H. H., and Running, S. W.: 1993, ‘A Physiology-Based Gap Model of Forest Dynamics’, Ecology 74, 792–797.

    Google Scholar 

  • Gauthier, S., Bergeron, Y., and Simon, J.-P.: 1996, ‘Effects of Fire Regime on the Serotiny Level of Jack Pine’, J. Ecol. 84, 539–548.

    Google Scholar 

  • Gauthier, S., Simon, J.-P., and Bergeron, Y.: 1992, ‘Genetic Structure and Variability in Jack Pine (Pinus banksiana Lamb.) Populations: Effect of Insularity’, Can. J. Forest Res. 22, 1958–1965.

    Google Scholar 

  • Gear, A. J. and Huntley, B.: 1991, ‘Rapid Changes in The Range Limits of Scots Pine 4000 Years Ago’, Science 251, 544–547.

    Google Scholar 

  • Grabherr, G., Gottfried, M., and Pauli, H.: 1994. ‘Climate Effects on Mountain Plants’, Nature 369,448.

    Google Scholar 

  • Gray, A. N. and Spies T. A.: 1997, ‘Microsite Controls on Tree Seedling Establishment in Conifer Forest Canopy Gaps’, Ecology 78, 2458–2473.

    Google Scholar 

  • Gray, D. R., Régnière, J., and Boulet, B.: 1999, Forecasting Defoliation by Spruce Budworm in Québec, Research Note No. 7, Nat. Resour. Can., Can. For. Serv., Laurentian For. Cent., Sainte-Foy, QC, p. 8.

  • Green, D. S.: 1980, ‘The Terminal Velocity and Dispersal of Spinning Samaras’, American Journal of Botany 67, 1218–1224.

    Google Scholar 

  • Greene, D. F. and Johnson, E. A.: 1989, ‘A Model of Wind Dispersal of Winged or Plumed Seeds’, Ecology 70, 339–347.

    Google Scholar 

  • Hanson, J. S., Malanson, G. P., and Armstrong, M. P.: 1989, ‘Spatial Constraints on the Response of Forest Communities to Climate Change’, inMalanson, G. P. (ed.), Natural Areas Facing Climatic Change, SPB Academic, The Hague, The Netherlands, pp. 1–23.

    Google Scholar 

  • Hanson, J. S., Malanson, G. P., and Armstrong, M. P.: 1990, ‘Landscape Fragmentation and Dispersal in a Model of Riparian Forest Dynamics’, Ecol. Modelling 49, 277–296.

    Google Scholar 

  • Hengeveld, R.: 1989, Dynamics of Biological Invasions, Chapman and Hall, London.

    Google Scholar 

  • Hobbie, S. E. and Chapin, F. S., III: 1998, ‘An Experimental Test of Limits to Tree Establishment in Arctic Tundra’, J. Ecol. 86, 449–461.

    Google Scholar 

  • Hoffman, W. A. et al.: 2000, ‘Elevated CO2 Enhances Resprouting of a Tropical Savanna Tree’, Oecologia 123, 312–317.

    Google Scholar 

  • Hogg, E. H.: 1994, ‘Climate and the Southern Limit of the Western Canadian Boreal Forest’, Can. J. For. Res., 24, 1835–1845.

    Google Scholar 

  • Holling, C. S.: 1992, ‘The Role of Forest Insects in Structuring the Boreal Landscape’, in Shugart, H. H., Leemans, R., and Bonan, G. B. (eds.), A Systems Analysis of the Global Boreal Forest, Cambridge University Press, NY, pp. 170–195.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change, 1995 – The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge, U.K., and New York, U.S.A., 572 pp.

    Google Scholar 

  • Houle, G.: 1992, ‘Spatial Relationship between Seed and Seedling Abundance and Mortality in a Deciduous Forest of North-eastern North America’, J. Ecol. 80, 99–108.

    Google Scholar 

  • Houle, G.: 1998, ‘Seed Dispersal and Seedling Recruitment of Betula alleghaniensis: Spatial Inconsistency in Time’, Ecology 79, 807–818.

    Google Scholar 

  • Huntley, B. and Birks, H. J. B.: 1983, An Atlas of Past and Present Pollen Maps for Europe, 0–13000 Yr Ago, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Hutchins, H. E. and Lanner, R. M.: 1982, ‘The Central Role of Clark's Nutcracker in the Dispersal and Establishment of Whitebark Pine’, Oecologia 55, 192–201.

    Google Scholar 

  • Huth, A. and Ditzer, T.: 2000, ‘Simulation of the Growth of a Lowland Dipterocarp Rain Forest with FORMIX3’, Ecol. Modelling 134, 1–25.

    Google Scholar 

  • Iverson, L. R. and Prasad, A. M.: 1998, ‘Predicting Abundance of 80 Tree Species Following Climate Change in the Eastern United States’, Ecol. Monogr. 68, 465–485.

    Google Scholar 

  • Jäger, D., Lexer, M. J., Hönninger, K., Neubauer, Ch., Katzensteiner, K., and Blab, A.: 2000, ‘Simulated Effects of Ecosystem Restoration Measures: The Potential Natural Vegetation Approach Revisited’, in Hasenauer, H. (ed.), Ecological and Economical Impacts of Restoration Processes in Secondary Coniferous Forests. Proceedings of the International Conference on Ecosystem Restoration, Universität für Bodenkultur, Vienna, pp. 137–142.

  • Jarvis, P. G. (ed.): 1998, European Forests and Global Change: The Likely Impacts of Rising CO2 and Temperature, Cambridge University Press, Cambridge, U.K., p. 380.

    Google Scholar 

  • Jensen, T. S.: 1985, ‘Seed-Seed Predator Interactions of European Beech, Fagus Silvatica, and Forest Rodents’, Oikos 44, 149–156.

    Google Scholar 

  • Johnson, I. R. and Thornley, J. H. M.: 1987, ‘A Model of Shoot:Root Partitioning with Optimal Growth’, Ann. Botany 60, 133–142.

    Google Scholar 

  • Johnson, W. C. and Adkisson, C. S.: 1985, ‘Dispersal of Beech Nuts by Blue Jays in Fragmented Landscapes’, American Midland Naturalist 113, 319–324.

    Google Scholar 

  • Jorritsma, I. T. M., Van Hees, A. F.M., and Mohren G. M. J.: 1999, ‘Forest Development in Relation to Ungulate Grazing: A Modeling Approach’, For. Ecol. Manage. 120, 23–34.

    Google Scholar 

  • Kasrajan, V. O., Churschudjan, P. A., and Gabrieljan, V. G.: 1974, On the Physiology of Aging in Trees from Stump Sprouting [translation from Russian by Krapfenbauer, A.], Tiflis Forest Research Station, Report No. XXI.

  • Keane, R. E., Austin, M., Field, C., Huth, A., Lexer, M. J., Peters, D., Solomon, A., and Wyckoff, P.: 2001, ‘Tree Mortality in Gap Models: Application to Climate Change’, Clim. Change 51, 509–540.

    Google Scholar 

  • Kienast, F.: 1987, FORECE – a Forest Succession Model for Southern Central Europe, ORNL/TM-10575, Environmental Sciences Division Publication No. 2989, Oak Ridge National Laboratory, Oak Ridge, TN, p. 73.

    Google Scholar 

  • Kienast, F. and Kuhn, N.: 1989, ‘Simulating Forest Succession Along Ecological Gradients in Southern Central Europe’, Vegetatio 79, 7–20.

    Google Scholar 

  • Kienast, F., Fritschi, J., Bissegger, M., and Abderhalden, W.: 1999, ‘Modeling Successional Patterns of High-Elevation Forests under Changing Herbivore Pressure-Responses at The Landscape Level’, Forest Ecol. Manage. 120, 35–46.

    Google Scholar 

  • King, G. A. and Herstrom, A. A.: 1997, ‘Holocene Tree Migration Rates Objectively Determined from Fossil Pollen Data’, in Huntley, B., Cramer, W., Morgan, A. V., Prentice, H. C., and Allen, J. R. M. (eds.), Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, Springer Verlag. Berlin, 47, pp. 91–101.

    Google Scholar 

  • Kobe, R. K.: 1997, ‘Carbohydrate Allocation to Storage as a Basis of Interspecific Variation in Sapling Survivorship and Growth’, Oikos 80, 226–233.

    Google Scholar 

  • Koehler, P. and Huth, A.: 1998, ‘The Effects of Tree Species Grouping in Tropical Rainforest Modelling: Simulations with the Individual-Based Model FORMIND’, Ecol. Modelling 109, 301–321.

    Google Scholar 

  • Koenig, W. D. and Knops, J. M. H.: 1998, ‘Scale of Mast-Seeding and Tree-Ring Growth’, Nature 396,225–226.

    Google Scholar 

  • Kräuchi, N. and Kienast, F.: 1993, ‘Modelling Subalpine Forest Dynamics as Influenced by a Changing Environment’, Water Air Soil Pollut. 68, 185–197.

    Google Scholar 

  • Krissl, W. and Müller, F.: 1989, Waldbauliche Bewirtschaftungsrichtlinien für das Eichenmischwaldgebiet in Österreich [Silvicultural Guidelines for Oak Forests in Austria], Federal Forest Research Station, Vienna, FBVA-Report No. 40, p. 134, in German.

    Google Scholar 

  • Kullman, L.: 1996, ‘Norway Spruce Present in the Scandes Mountains, Sweden at 8000 BP: New Light on Holocene Tree Spread’, Global Ecology and Biogeography Letters 5, 94–101.

    Google Scholar 

  • Kullman, L.: 1998, ‘Palaeoecological, Biogeographical and Palaeoclimatological Implications of Early Holocene Immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden’, Global Ecol. Biogeog. Lett. 7, 181–188.

    Google Scholar 

  • Kullman, L. and Engelmark, O.: 1991, ‘Historical Biogeography of Picea abies (L.) Karst. at its Subarctic Limit in Northern Sweden’, J. Biogeogr. 18, 63–70.

    Google Scholar 

  • Kupfer J. A. and Runkle J. R.: 1996, ‘Early Gap Successional Pathways in a Fagus-Acer Forest Preserve: Pattern and Determinants’, Journal of Vegetation Science 7, 247–256.

    Google Scholar 

  • Kwit, C., Platt W. J., and Slater H. H.: 2000, ‘Post-Hurricane Regeneration of Pioneer Plant Species in South Florida Subtropical Hardwood Hammocks’, Biotropica 32, 244–251.

    Google Scholar 

  • LaBastide, J. G. A. and Vredenburch, C. L. H.: 1970, The Influence of Weather Conditions on the Seed Production of Some Forest Trees in the Netherlands, Report 102, Forest Research Institute ‘De Dorschkamp’, Wageningen, The Netherlands.

    Google Scholar 

  • Landsberg, J. J.: 1986, Physiological Ecology of Forest Production, Academic Press, London, p. 198.

    Google Scholar 

  • Leemans, R. and Prentice, I. C.: 1987, ‘Description and Simulation of Tree-Layer Composition and Size Distribution in a Primaeval Picea-Pinus Forest’, Vegetatio 69, 147–156.

    Google Scholar 

  • Leemans, R. and Prentice, I. C.: 1989. FORSKA, a General Forest Succession Model, Institute of Ecological Botany, Uppsala, p. 70.

    Google Scholar 

  • Lexer, M. J.: 2001, ‘Simulation der potentiellen natürlichen Vegetation für Österreichs Wald. Vergleich von statischen und dynamischen Modellkonzepten’, [Simulating potential natural vegetation in the Eastern Alps: Comparison of dynamic and static modeling approaches] Forstliche Schriftenreihe, Universität für Bodenkultur, Vienna, in German, in press.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 1998, ‘Simulated Effects of Bark Beetle Infestations on Stand Dynamics in Picea Abies Stands: Coupling a Patch Model and a Stand Risk Model’, in Beniston, M. and Innes, J. L. (eds.), The Impacts of Climate Variability on Forests, Lecture Notes in Earth Sciences 74, Springer-Verlag, p. 329.

  • Lexer M. J. and Hönninger, K.: 2000, ‘A Modified 3D-Patch Model for Spatially Explicit Simulation of Vegetation Composition in Heterogeneous Landscapes’, For. Ecol. Manage. 144, 43–65.

    Google Scholar 

  • Livingston, N. J. and Black, T. A.: 1986, ‘Water Stress and Survival of Three Species of Conifer Seedlings Planted on a High South-Facing Clear-Cut’, Can. J. Forest Res. 17, 1115–1123.

    Google Scholar 

  • Loehle, C. and LeBlanc, D.: 1996, ‘Model-Based Assessments of Climate Change Effects on Forests: A Critical Review’, Ecol. Modelling 90, 1–31.

    Google Scholar 

  • Lotter, A. F., Birks, H. J. B., Eicher, U., Hofmann, W., Schwander, J., and Wick, L.: 2000, ‘Younger Dryas and Allerod Summer Temperatures at Gerzensee (Switzerland) Inferred from Fossil Pollen and Cladoceran Assemblages’, Palaeogeogr., Palaeoclimatol., Palaeoecol. 159(3–4), 349–361.

    Google Scholar 

  • Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A.: 1998, ‘Modern Diatom, Cladocera, Chironomid, and Chrysophyte Cyst Assemblages as Quantitative Indicators for The Reconstruction of Past Environmental Conditions in the Alps. II. Nutrients’, J. Paleolim., 19, 443–463.

    Google Scholar 

  • Maak, K. and von Storch, H.: 1997, ‘Statistical Downscaling of Monthly Mean Air Temperature to the Beginning of Flowering of Galanthus nivalis L. in Northern Germany’, Int. J. of Biometeorol. 41, 5–12.

    Google Scholar 

  • Mäkelä, A., Sievänen, R., Lindner, M., and Lasch, P.: 2000, ‘Application of Volume Growth and Survival Graphs in the Evaluation of Four Process-Based Forest Growth Models’, Tree Physiology 20(5–6), 347–355.

    Google Scholar 

  • Malanson, G. P.: 1996, ‘Effects of Dispersal and Mortality on Diversity in a Forest Stand Model’, Ecol. Modelling 87, 103–110.

    Google Scholar 

  • Malanson, G. P.: 1997, ‘Effects of Feedbacks and Seed Rain on Ecotone Patterns’, Landscape Ecology 12, 27–38.

    Google Scholar 

  • Malanson, G. P. and Armstrong, M. P.: 1996, ‘Dispersal Probability and Forest Diversity in a Fragmented Landscape’, Ecol. Modelling 87(1–3), 91–102.

    Google Scholar 

  • Malanson, G. P., Armstrong, M. P., and Bennett, D. A.: 1996, ‘Fragmented Forest Response to Climatic Warming and Disturbance’, in Goodchild, M. F., Steyaert, L. T., Parks, B. O., Crane, M. P., Johnston, C. A., Maidment, D. R., and Glendinning, S. J. (eds.), GIS and Environmental Modelling: Progress and Research Issues, Fort Collins, CO, GIS World, pp. 243–247.

    Google Scholar 

  • Malanson, G. P. and Cairns, D. M.: 1997, ‘Effects of Dispersal, Population Delays, and Forest Fragmentation on Tree Migration Rates’, Plant Ecol. 131, 67–79.

    Google Scholar 

  • Matlack, G. R.: 1987, ‘Diaspore Size, Shape, and Fall Behavior in Wind-Dispersed Plant Species’, American Journal of Botany 74, 1150–1160.

    Google Scholar 

  • Matthews, J. D.: 1955, ‘The Influence ofWeather on the Frequency of Beech Mast Years in England’, Forestry 28,107–116.

    Google Scholar 

  • Maurer, B. A. and Heywood, S. G.: 1993, ‘Geographical Range Fragmentation and Abundance in Neotropical Migratory Birds’, Conservation Biology 7, 501–509.

    Google Scholar 

  • McInnes, P. F., Naiman, R. J., Pastor, J., and Cohen, Y.: 1992, ‘Effects of Moose Browsing on Vegetation and Litter of Boreal Forest, Isle Royale, Michigan, U.S.A.’, Ecology 73, 2059–2075.

    Google Scholar 

  • Mencuccini, M., Piussi, P., and Zanzi Sulli, A.: 1995, ‘Thirty Years of Seed Production in a Subalpine Norway Spruce Forest: Patterns of Temporal and Spatial Variation’, Forest Ecol. Manage., 76, 109–125.

    Google Scholar 

  • Melillo, J. M., Prentice, I. C., Farquhar, G. D., Schulze, E. D., and Sala, O. E.: 1996, ‘Terrestrial Biotic Responses to Environmental Change and Feedbacks to Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B.A., et al. (eds.), Climate Change, 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 445–481.

    Google Scholar 

  • Mladenoff, D. J. and Baker, W. L.: 1999, Spatial Modeling of Forest Landscape Change: Approaches and Applications, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Mohan, E., Mitchell, N., and Lovell, P.: 1984, ‘Environmental Factors Controlling Germination of Leptospermum scoparium (Manuka)’, New Zealand Journal of Botany 22, 95–101.

    Google Scholar 

  • Ne'eman, G. and Izhaki, I.: 1999, ‘The Effect of Stand Age and Microhabitat on Soil Seed Banks in Mediterranean Aleppo Pine Forests after Fire’, Plant Ecol. 144, 115–125.

    Google Scholar 

  • Nathan, R. and Muller-Landau, H. C.: 2000, ‘Spatial Patterns of Seed Dispersal, their Determinants and Consequences for Recruitment’, Trends in Ecology and Evolution 15, 279–285.

    Google Scholar 

  • Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.-W., Huth, A., Hurtt, G. C., Kohyama, T., and Peñuelas, J.: 2001, ‘Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climate Change’, Clim. Change 51, 415–447.

    Google Scholar 

  • Ojima, D. S., Kittel, T. G. F., Rosswall, T., and Walker, B. H.: 1991, ‘Critical Issues for Understanding Global Change Effects on Terrestrial Ecosystems’, Ecol. Appl. 1, 316–325.

    Google Scholar 

  • Pacala, S. W., Canham, C. D., and Silander, J. A. Jr.: 1993, ‘Forest Models Defined by Field Measurements: I. The Design of a Northeastern Forest Simulator’, Can. J. Forest Res. 23, 1980–1988.

    Google Scholar 

  • Pacala, S. W. and Deutschman, D. H.: 1995, ‘Details that Matter – The Spatial Distribution of Individual Trees Maintains Forest Ecosystem Function’, Oikos 74, 357–365.

    Google Scholar 

  • Pacala, S.W. and Hurtt, G. C.: 1993, ‘Terrestrial Vegetation and Climate Change: Integrating Models and Experiments’, in Kareiva, P., Kingsolver, J. G., and Huey, R. B. (eds.), Biotic Interactions and Global Change, Sinauer, Sunderland, Mass., pp. 57–74.

  • Pastor, J., Cohen, Y., and Moen, R.: 1999, ‘Generation of Spatial Patterns in Boreal Forest Landscapes’, Ecosystems 2, 439–450.

    Google Scholar 

  • Pastor, J. and Naiman, R. J.: 1992, ‘Selective Foraging and Ecosystem Processes in Boreal Forests’, The American Naturalist 139, 690–705.

    Google Scholar 

  • Pastor, J. and Post, W.M.: 1985, ‘Development of a Linked Forest Productivity–Soil ProcessModel’, ORNL/TM-9519, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Pickett, S. T. A. and White, P. S. (eds.): 1985, The Ecology of Natural Disturbance and Patch Dynamics, Academic Press, Orlando.

    Google Scholar 

  • Pielou, E. C.: 1979, Biogeography, John Wiley and Sons, New York.

    Google Scholar 

  • Pitelka, L. F., Bugmann, H., and Reynolds, J. F.: 2001, ‘How Much Physiology is Needed in Forest Gap Models for Simulating Long-Term Vegetation Response to Global Change? Introduction’, Clim. Change 51, 251–257.

    Google Scholar 

  • Pitelka, L. and the Plant Migration Workshop Group: 1997, ‘Plant Migration and Climate Change’, American Scientist 85, 464–473.

    Google Scholar 

  • Portnoy, S. and Willson, M. F.: 1993, ‘Seed Dispersal Curves, Behavior of the Tail of the Distribution’, Evolut. Ecol. 7, 25–44.

    Google Scholar 

  • Post, W. M. and Pastor, J.: 1996, ‘LINKAGES – an Individual-Based Forest Ecosystem Model’, Clim. Change 34, 253–261.

    Google Scholar 

  • Prentice, I. C.: 1986, ‘Vegetation Response to Past Climatic Variation’, Vegetatio 67, 131–141.

    Google Scholar 

  • Prentice, I. C., Bartlein, P. J., and Webb III, T. W.: 1991, ‘Vegetation and Climate Change in Eastern North America since the Last Glacial Maximum’, Ecology 72, 2038–2056.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Modelling 65, 51–70.

    Google Scholar 

  • Price, D. T., Halliwell, D. H. Apps, M. J., and Peng, C. H.: 1999, ‘Adapting a PatchModel to Simulate the Sensitivity of Central-Canadian Boreal Ecosystems to Climate Variability’,J. Biogeogr. 26, 1101–1113.

    Google Scholar 

  • Régnière, J. and Sharov, A.: 1999, ‘Simulating Temperature-Dependent Ecological Processes at the Sub-Continental Scale: Male Gypsy Moth Flight Phenology as an Example’, Int. J. Biometeorol. 42, 146–152.

    Google Scholar 

  • Reynolds, J. F., Hilbert, D. W., and Kemp, P. R.: 1993, ‘Scaling Ecophysiology from the Plant to the Ecosystem: A Conceptual Framework’, in Ehleringer, J. R. and Field, C. B. (eds.), Scaling Physiological Processes: Leaf to Globe, Academic Press, San Diego, pp. 127–140.

    Google Scholar 

  • Ribbens E., Silander, J., and Pacala, S.: 1994, ‘Seedling Recruitment in Forests: Calibrating Models to Predict Patterns of Tree Seedling Dispersion’, Ecology 75, 1794–1806.

    Google Scholar 

  • Ritchie, J. C.: 1986, ‘Climate Change and Vegetation Response’, Vegetatio 67, 65–74.

    Google Scholar 

  • Roberts, D.W.: 1996, ‘Modelling Forest Dynamics with VitalAttributes and Fuzzy Systems Theory’, Ecol. Modelling 90, 161–173.

    Google Scholar 

  • Rogers, R. and Johnson, P. S.: 1998, ‘Approaches to Modeling Natural Regeneration in Oak-Dominated Forests’, Forest Ecol. Manage. 106, 45–54.

    Google Scholar 

  • Rohmeder, E.: 1972, Das Saatgut in der Forstwirtschaft, [Seed in Forestry Practice], Paul Parey, p. 273, in German.

  • Sakai, A., Sakai, S., and Akiyama, F.: 1997, ‘Do Sprouting Tree Species on Erosion-Prone Sites Carry Large Reserves of Resources?’, Ann. Botany 79, 625–630.

    Google Scholar 

  • Salomao, A. N., Da Eira, M. T. S., and Da Cunha, R.: 1996, ‘The Effect of Temperature on Seed Germination of Four Dalbergia nigra Fr. Allem. Leguminosae Trees’, Revista Arvore, 19, 588–594.

    Google Scholar 

  • Schaber, J., Badeck, F.-W., and Lasch, P.: 1999, ‘Ein Modell der Sukzessionsdynamik europäischer Wälder [A model of successional dynamics in European forests] – Forest Ecosystems in a Changing Environment (4C)’, in Pelz, D. R., Rau, O., and Saborowski, J. (eds.), Deutscher Verband forstlicher Versuchsanstalten, Sektion forstliche Biometrie und Informatik, 11. Jahrestagung und Internationale biometrische Gesellschaft, Deutsche Region, Arbeitsgruppe Ökologie, Herbstkolloquium, Freiburg, pp. 212–217, in German.

  • Sharpe, P. J. H.: 1990, ‘Forest Modeling Approaches: Compromises between Generality, and Precision’, in Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G. (eds.), Process Modeling of Forest Growth Responses to Environmental Stress, Timber Press, pp. 180–190.

  • Shibata, M. and Nakashizuka, T.: 1995, ‘Seed and Seedling Demography of Four Co-occurring Carpinus Species in a Temperate Forest’, Ecology 76, 1099–1108.

    Google Scholar 

  • Shugart, H. H.: 1984, A Theory of Forest Dynamics. The Ecological Implications of Forest Succession Models, Springer-Verlag, New York, p.278.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1977, ‘Development of an Appalachian Deciduous Forest Succession Model and its Application to Assessment of the Impact of the Chestnut Blight’, J. Environ. Manage. 5, 161–179.

    Google Scholar 

  • Smith, B, Prentice, I. C., and Sykes, M. T.: 2001, ‘Representation of Vegetation Dynamics in Modelling of Terrestrial Ecosystems: Comparing Two Contrasting Approaches within European Climate Space’, Global Ecol. Biogeogr. 10, 621–638.

    Google Scholar 

  • Smith, T. M. and Urban, D. L.: 1988, ‘Scale and Resolution of Forest Structural Pattern’, Vegetatio 74, 143–150.

    Google Scholar 

  • Solomon, A. M.: 1986, ‘Transient Responses of Forests to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’, Oecologia 68, 567–579.

    Google Scholar 

  • Solomon, A. M.: 1997, ‘Natural Migration Rates of Trees: Global Terrestrial Carbon Cycle Implications’, in Huntley, B., Cramer, W., Morgan, A. V., Prentice, H. C., and Allen, J. R. M. (eds.), Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, Springer-Verlag, Berlin, 47, pp. 455–468.

    Google Scholar 

  • Solomon, A. M. and Kirilenko, A. P.: 1997, ‘Climate Change and Terrestrial Biomass:What If Trees Do Not Migrate!’, Global Ecol. Biogeog. Lett. 6, 139–148.

    Google Scholar 

  • Solomon, A. M., Tharp, M. L., West, D. C., Taylor, G. E., Webb, J. W., and Trimble, J. L.: 1984, Response of Unmanaged Forests to Carbon Dioxide-Induced Climate Change: Available Information, Initial Tests, and Data Requirements, TR-009, United States Department of Energy, Washington, D.C.

    Google Scholar 

  • Sork, V. L., Bramble, J., and Sexton, O.: 1993, ‘Ecology of Mast-Fruiting in Three Species of North American Deciduous Oaks’, Ecology 74, 528–541.

    Google Scholar 

  • Stapanian, M. A. and Smith, C. C.: 1986, ‘How Fox Squirrels Influence the Invasion of Prairies by Nut-Bearing Trees’, J. Mammol. 67, 326–332.

    Google Scholar 

  • Stoecklin, J. and Baeumler, E.: 1996, ‘Seed Rain, Seedling Establishment and Clonal Growth Strategies on a Glacier Foreland’, J. Veg. Sci. 7, 45–56.

    Google Scholar 

  • Sykes, M. T., Prentice, I. C., and Cramer, W.: 1996, ‘A Bioclimatic Model for the Potential Distribution of North European Tree Species under Present and Future Climates’, J. Biogeogr. 23, 203–233.

    Google Scholar 

  • Turgeon, J. J. and de Groot, P.: 1992, Management of Insect Pests of Cones in Seed Orchards in Eastern Canada, Field Guide, Ontario Ministry of Natural Resources and Forestry Canada, Sault Ste. Marie, ON, p. 98.

    Google Scholar 

  • Turner, M. G., Baker, W. L., Peterson, C. J., and Peet, R. K.: 1998, ‘Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances’, Ecosystems 1, 511–523.

    Google Scholar 

  • Urban, D. L.: 1990, A Versatile Model to Simulate Forest Pattern: A User's Guide to ZELIG Version 1.0, University of Virginia, Charlotteville, VA.

    Google Scholar 

  • Urban, D. L., Acevedo, M. F., and Garman, S. L.: 1999, ‘Scaling Fine-Scale Processes to Large-Scale Patterns Using Models Derived from Models: Metamodels’, in Mladenoff, D. and Baker, W. L. (eds.), Spatial Modeling of Forest Landscape Change, Cambridge University Press, Cambridge, U.K., pp. 70–98.

    Google Scholar 

  • Urban, D. L. and Smith, T. M.: 1989, ‘Extending Individual-Based ForestModels to Simulate Large-Scale Environmental Pattern’, Bull. Ecol. Soc. Amer. 70, Suppl., 284–285.

    Google Scholar 

  • Van der Meer, P. J., Sterck, F. J., and Bongers, F.: 1998, ‘Tree Seedling Performance in Canopy Gaps in a Tropical Rain Forest at Nouragues, French Guiana’, J. Tropical Ecol. 2, 119–137.

    Google Scholar 

  • Van der Wall, S. B. and Balda, R. P.: 1977, ‘Coadaptations of the Clark's Nutcracker and the Pinon Pine for Efficient Seed Harvest and Dispersal’, Ecol. Monogr. 47, 89–111.

    Google Scholar 

  • Van Hees, A. F. M.: 1997, ‘Growth and Morphology of Pedunculate Oak (Quercus robur L.) and Beech (Fagus sylvatica L.) Seedlings in Relation to Shading and Drought.’, Annales des Sciences Forestières 54, 9–18.

    Google Scholar 

  • Van Wieren, S. E.: 1996, ‘Do Large Herbivores Select a Diet That Maximises Short-Term Energy Intake Rates?’, Forest Ecol. Manage. 88, 149–156.

    Google Scholar 

  • Vegis, A.: 1964, ‘Dormancy in Higher Plants’, Ann. Rev. Plant Physiol. 15, 185–224.

    Google Scholar 

  • Vegis, A.: 1973, ‘Dependence of Growth Processes on Temperature’, in Precht, C. J., Hensel, H., and Larcher, W., Temperature and Life, Springer-Verlag, Berlin, pp. 145–169.

    Google Scholar 

  • Wareing, P. F. and Saunders, P. F.: 1971, ‘Hormones and Dormancy’, Ann. Rev. Plant Physiol. 22, 261–288.

    Google Scholar 

  • Webb III, T.: 1981, ‘The Past 11,000 Years of Vegetational Change in Eastern North America’, BioScience 31, 501–506.

    Google Scholar 

  • Webb III, T.: 1986, ‘Is Vegetation in Equilibrium with Climate? How to Interpret Late-Quaternary

  • Pollen Data’, Vegetatio 67, 75–91.

  • Wick, L. and Tinner, W.: 1997, ‘Vegetation Changes and Timberline Fluctuations in the Central Alps as Indicators of Holocene Climatic Oscillations’, Arctic and Alpine Research 29, 445–458.

    Google Scholar 

  • Williamson, M.: 1996, Biological Invasions, Chapman and Hall, London.

    Google Scholar 

  • Williamson, M.: 1999, ‘Invasions’, Ecography 22, 5–12

    Google Scholar 

  • Wu, J. and Levin, S. A.: 1994, ‘A Spatial Patch Dynamic Modeling Approach to Pattern and Process in an Annual Grassland’, Ecol. Monogr. 64, 447–464.

    Google Scholar 

  • Wullschleger, S. D., Jackson, R. B., Currie, W. S., Friend, A. D., Luo, Y., Mouillot, F., and Shao, G.: 2001, ‘Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change’, Clim. Change 51, 449–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, D.T., Zimmermann, N.E., van der Meer, P.J. et al. Regeneration in Gap Models: Priority Issues for Studying Forest Responses to Climate Change. Climatic Change 51, 475–508 (2001). https://doi.org/10.1023/A:1012579107129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012579107129

Keywords

Navigation