Skip to main content
Log in

Recent advances in molecular genetics of forest trees

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The use of molecular markers has greatly enhanced our understanding of the genome structure of forest trees. Conifers, in particular, have a relatively large genome, containing a very high proportion of repeated DNA, consisting of tandemly repetitive and dispersed repetitive DNA sequences. The nature of highly conserved tandemly repetitive rRNA genes has been investigated in a number of tree species, and their sites mapped on specific chromosomes by fluorescent in situ hybridization (FISH). Different families of retrotransposons (IFG, and TPE1) have been isolated and characterized from the dispersed repetitive DNA of pines. Genome maps have been constructed in a number of forest tree genera: Pinus, Picea, Pseudotsuga, Cryptomeria, Taxus, Populus, and Eucalyptus. EST databases have been established from cDNA clones of pines and poplars. The structure and maternal or paternal modes of inheritance of organelle genomes have been investigated in forest trees. Comparative mapping in conifers has shown that gene families are conserved across genera. Due to lack of polyploidy in conifers, the evolution of this group of trees may have occurred primarily by duplication and dispersal of genes, probably by retrotranspositions, to form complex gene families. The evolution of angiosperm tree species has presumably involved both gene duplication as well as genome duplication (polyploidy). Application of genetic engineering has shown that genes from phylogenetically unrelated organisms can be introduced and expressed in trees, thus offering prospects of genetic improvement of forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarts, M.G.M., W.G. Dirkse, W.J. Stiekema & A. Pereira, 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715–717.

    PubMed  CAS  Google Scholar 

  • Adams, W.T. & R.J. Jolly, 1980. Linkage relationships among twelve allozyme loci in loblolly pine. J Heredity 71: 199–202.

    CAS  Google Scholar 

  • Ahn, S. & S.D. Tanksley, 1993. Comparative linkage maps of the rice and maize genotypes. Proc Natl Acad Sci USA 90: 7980–7984.

    PubMed  CAS  Google Scholar 

  • Ahuja, M.R., 1988. Gene transfer in forest trees. In: J.E. Hanover & D.E. Keathley (Eds.), Genetic Manipulation of Woody Plants, pp. 25–41. Plenum Press, New York.

    Google Scholar 

  • Ahuja, M.R., 1997. Transgenes and genetic instability. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 90–100. Gen. Tech. Rep. RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Ahuja, M.R., 2000. Genetic engineering in forest trees: State of the art and future perspectives. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1, pp. 31–49. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ahuja, M.R., M.E. Devey, A.T. Groover, K.D. Jermstad & D.B. Neale, 1994. Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor Appl Genet 88: 279–282.

    CAS  Google Scholar 

  • Ali, I.F., D.B. Neale & K.A. Marshall, 1991. Chloroplast DNA restriction fragment length polymorphism in Sequoia sempervirens D.Don Endl., Pseudotsuga menziesii (Mirb.) Franco, Calocedrus decurrens (Torr.), and Pinus taeda L. Theor Appl Genet 81: 83–89.

    CAS  Google Scholar 

  • Allona, I., M. Quinn, E. Shoop et al., 1998. Analysis of xylem formation in pine by cDNA sequences. Proc Natl Acad Sci USA 95: 9693–9698.

    PubMed  CAS  Google Scholar 

  • Awadalla, P., A. Eyre-Walker & J. Maynard Smith, 1999. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286: 2524–2525.

    PubMed  CAS  Google Scholar 

  • Azumi, T., Kajita, T., Yokoyoma, J. & Ohashi, H., 2000. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am J Bot 87: 67–75.

    Google Scholar 

  • Backert, S., B.L. Nielsen & T. Börner, 1997. The mystry of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2: 477–483.

    Google Scholar 

  • Baldursson, S. & M.R. Ahuja, 1996. Cytogenetics and potential of haploidy in forest tree genetics and improvement. In: S.M. Jain, S.K. Sopory & R.E. Veilleux (Eds.), In Vitro Haploid Production in Higher Plants, Vol. 1, pp. 49–66. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Baucher, M., B. Monties, M. van Montagu & W. Boerjan. 1998. Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17: 125–197.

    CAS  Google Scholar 

  • Beavis, W.D. & D. Grant, 1991. A linkage map based on information from F2 population of maize (Zea mays L.). Theor Appl Genet 82: 636–644.

    CAS  Google Scholar 

  • Beckmann, J.S. & M. Soller, 1990. Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite. Bio/Technology 8: 930–932.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., 1996. The contribution of retroelemnts to plant genome organization, function and evolution. Trends in Microbiol 4: 347–353.

    CAS  Google Scholar 

  • Bennetzen, J.L., K. Schrick, P.S. Springer, W.E. Brown & P. San-Miguel, 1994. Active maize genes are modified and flanked by diverse classes of modified highly repetitive DNA. Genome 37: 565–576.

    PubMed  CAS  Google Scholar 

  • Binelli, G. & B. Bucci, 1994. a genetic map of Picea abies Karst., based on RAPD markers, as a tool in population genetics. Theor Appl Genet 88: 283–288.

    CAS  Google Scholar 

  • Bobola, M.S., D.E. Smith & A.S. Klien, 1992. Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol Biol Evol 9: 125–137.

    PubMed  CAS  Google Scholar 

  • Bobola, M.S., R.T. Eckert, A.S. Klien, K. Stapelfeldt, D.S. Smith & D. Guenette, 1996. Using nuclear and organelle DNA markers to discriminate among Picea rubens, Picea mariana and their hybrids. Can J For Res 26: 433–443.

    Google Scholar 

  • Bonga, J.M., 1977. Application of tissue culture in forestry. In: J. Reinert & Y.P.S. Bajaj (Eds.), Applied and Fundamental Aspects of Plant Cell Tissue and Organ Culture, pp. 93–108. Springer Verlag, Berlin.

    Google Scholar 

  • Bonierbale, M.W., R.L. Plaisted & S.D. Tanksley, 1988. RFLP map based on a common set of clones reveal modes of chromosome evolution in potato and tomato. Genetics 120: 1095–1103.

    PubMed  Google Scholar 

  • Botstein, D., R.L. White, M. Skolnick & R.W. Davis, 1980. Construction of genetic linkage map in man using restriction fragment length polymorphism. Am J Human Genet 32: 641–656.

    Google Scholar 

  • Bouchez, D. & H. Höfte, 1998. Functional genomics in plants. Plant Physiol 118: 725–732.

    PubMed  CAS  Google Scholar 

  • Boudet, A., 1998. A new view of lignification. Trends Plant Sci 3: 67–71.

    Google Scholar 

  • Bousquet, J., S.H. Strauss, A.H. Doerksen & R.A. Price, 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89: 7844–7848.

    PubMed  CAS  Google Scholar 

  • Bousquet, J., S.H. Strauss & P. Li, 1992. Complete congruence between morphological and rbcL-based molecular phylogenies in birches and related species (Betulaceae). Mol Biol Evol 9: 1076–1088.

    PubMed  CAS  Google Scholar 

  • Bradshaw, H.D., 1996. Molecular genetics of Populus. In: R.F. Stettler, H.D. Bradshaw, P.E. Heilman & T.M. Hinckley (Eds.), Biology of Populus and its Implications for Management and Conservation, pp. 183–199. NRC Research Press, Ontario, Canada.

    Google Scholar 

  • Bradshaw, H.D., M. Villar, B.D. Watson, K.G. Otto, S. Stewart & R.F. Stettler, 1994. Molecular genetics of growth and development in Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor Appl Genet 89: 167–178.

    CAS  Google Scholar 

  • Bradshaw, H.D. & R.F. Stettler, 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139: 963–973.

    PubMed  CAS  Google Scholar 

  • Braseleiro, A.C.M., C. Tourneur, J.C. Leple, V. Combes & L. Jouanin, 1992. Expression of mutant Arabidopsis thaliana acetolactate synthase gene confers chlorosulfuron resistance to transgenic poplar plants. Transg Res 1: 133–141.

    Google Scholar 

  • Britten, R.J. & D.E. Kohne, 1968. Repeated sequences in DNA. Science 161: 529–540.

    PubMed  CAS  Google Scholar 

  • Brown, G.R., V. Amarsinghe & J.E. Carlson, 1993. Preliminary karyotype and chromosomal localization of ribosomal DNA sites in white spruce using fluorescence in situ hybridization. Genome 36: 310–316.

    CAS  PubMed  Google Scholar 

  • Brown, G.R. & J.E. Carlson, 1997. Molecular cytogenetics of the genes encoding 18s-5.8s-26s rRNA and 5s rRNA in two species of spruce (Picea). Theor Appl Genet 95: 1–9.

    CAS  Google Scholar 

  • Brown, G.R. C.H. Newton & J.E. Carlson, 1998. Organization and distribution of Sau3A tandem repreated DNA sequence in Picea (Pinaceae) species. Genome 41: 560–565.

    PubMed  CAS  Google Scholar 

  • Brunner, A.M., R. Mohamad, R. Meilan, L.A. Sheppard, W.H. Rottman & S.H. Strauss, 1998. Genetic engineering of sexual sterility in shade trees. J Arboculture 24: 263–273.

    Google Scholar 

  • Brunner, A.M., W.H. Rottmann, L.A. Sheppard et al., 2000. Structure and expression of duplicate AGAMOUS orthologue in poplar. Plant Mol Biol 44: 619–634.

    PubMed  CAS  Google Scholar 

  • Brunsfeld, S.J., P.S. Soltis, D.E. Soltis et al., 1994. Phylogenetic relationship among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Syst Bot 19: 253–262.

    Google Scholar 

  • Burbidge, A., T.M. Grieve, K.J. Woodman & I.B. Taylor, 1995. Strategies for targeted transposon tagging of ABA biosynthetic mutants in tomato. Theor Appl Genet 91: 1022–1031.

    CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994a. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91: 1411–1415.

    PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994b. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916.

    PubMed  CAS  Google Scholar 

  • Byrne, M., J.C. Murrell, B. Allen & G.F. Moran, 1994. An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theor Appl Genet 91: 869–875.

    Google Scholar 

  • Cairney, J., N. Xu, G.S. Pullman, V.T. Ciavatta & B. Johns, 1999. Natural and somatic embryo development in loblolly pine. Appl Biochem Biotech 77–79: 5–17.

    Google Scholar 

  • Cervera, M.T., C. Plomion & C. Malpica, 2000a. Molecular markers and genome mapping in woody plants. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1, pp. 375–394. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Cervera, M.T., D. Remington, J.-M. Frigero et al., 2000b. Improved AFLP analysis of tree species. Can J For Res 30: 1608–1616.

    CAS  Google Scholar 

  • Cervera, M.T., V. Storme, B. Liu et al., 2001. Dense genetic linkage maps of three Populus species (P. deltoids, P. nigra, and P. trichocarp) based on AFLP and microsatellite markers. Genetics (in press).

  • Chandler, V.L. & Vaucheret, H. 2001. Gene activation and silencing. Plant Physiol 125: 145–148.

    PubMed  CAS  Google Scholar 

  • Charest, P.J., D. Lachance, Y. Deantier et al., 1996. Stable genetic transformation in black spruce and tamarack and the transgenic expression of conifers. In: M.R. Ahuja, W. Boerjan & D.B. Neale (Eds.), Somatic Cell Genetics and Molecular Genetics of Trees, pp. 97–104. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Chen, Z.-D, S.R. Manchester & H.-Y. Sun, 2000. Phylogeny and evolution of the Butalaceae as inferred from DNA sequences, morphology, and paleobotany. Am J Bot 86: 1168–1181.

    Google Scholar 

  • Chesnoy, L. & M.J. Thomas, 1971. Electron microscopy studies on gametogenesis and fertilization in gymnosperms. Phytomorphology 21: 50–63.

    Google Scholar 

  • Christensen, J.H., M. Baucher, A. O'Connell, M. van Montagu & W. Boerjan, 2000. Control of lignin biosynthesis. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1, pp. 227–267. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Coomber, S.A. & K.A. Feldmann, 1993. Gene tagging in transgenic plants. In: S.D. Kung & R. Wu (Eds.), Transgenic Plants, Vol. 1, pp. 225–240. Academic Press, New York.

    Google Scholar 

  • Conkle, M.T., 1981. Isozyme variation and linkage in six conifer species. In: Proc Symp on Isozymes on North American Forest Trees and Forest Insects, pp 11–17. Technical Coordinator M.T. Conkle. USDA For Ser Gen Tech Rep PSW-48.

  • Cornu, D., J.C. Leple, M. Bonade-Botino et al., 1996. Expression of a proteinase inhibitor and a Bacillus thurigiensisδ-endotoxin in transgenic poplars. In: M.R. Ahuja, W. Boerjan & D.B. Neale (Eds.), pp. 131–136. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Cullis, C.A., G.P. Griessen, S.W. Gorman & R.D. Teasdale, 1988. The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. In: W.M. Cheliak & A.C. Yapa (Eds.), Molecular Genetics of Forest Trees, pp. 34–40. Can For Serv PNFI Inf Rep PI-X-80.

  • Dean, C. & R. Schmidt, 1995. Plant genome: A current molecular description. Annu Rev Plant Physiol Plant Mol Biol 46: 395–418.

    CAS  Google Scholar 

  • Deverno, L., P.J. Charest & L. Bonen, 1993. Inheritance of mitochondrial DNA in the conifer Larix. Theor Appl Genet 86: 383–388.

    Google Scholar 

  • Devey, M.E., K.D. Jermstad, C.G. Tauer & D.B. Neale, 1991. Inheritance of RFLP loci in loblolly pine three-generation pedigree. Theor Appl Genet 83: 238–242.

    Google Scholar 

  • Devey, M.E., T.A. Fiddler, B.-H. Liu, S.J. Knapp & D.B. Neale, 1994. An RFLP linkage map for loblolly pine based on three generation outbred pedigree. Theor Appl Genet 88: 273–278.

    CAS  Google Scholar 

  • Devey, M.E., A. Delfino-Mix, B.B. Kinloch & D.B. Neale, 1995. Efficient mapping of a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci USA 92: 2066–2070.

    PubMed  CAS  Google Scholar 

  • Devey, M.E., J.C. Bell, D.N. Smith, D.B. Neale & G.F. Moran, 1996. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92: 673–679.

    CAS  Google Scholar 

  • Devey, M.E., M.M. Sewell, T.L. Uren & D.B. Neale, 1999. Comparative mapping in loblolly pine and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99: 656–662.

    CAS  Google Scholar 

  • Devillard, C., 1992. Genetic transformation of aspen (Populus tremula × P. alba) by Agrobacterium rhizogenes and regeneration of plants tolerant to herbicide. CR Acad Sci Paris, t. 314, Series III: 291–298.

    CAS  Google Scholar 

  • Dhillon, S.S., 1987. DNA in tree species. In: J.M. Bonga & D.J. Durzan (Eds.), Cell and Tissue Culture in Forestry, Vol. 1, pp. 298–313. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • DiRisi, J.L., V.R. Iyer & P.O. Brown, 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.

    Google Scholar 

  • Donahue, R.A., T.D. Davis, C.H. Michler et al., 1994. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24: 2377–2383.

    Google Scholar 

  • Dong, J. & D.B. Wagner, 1993. Taxonomic and population differentiation of mitochondrial diversity in Pinus banksiana and Pinus contorta. Theor Appl Genet 86: 573–578.

    Google Scholar 

  • Dong, J., D.B. Wagner, A.D. Yanchuk, M.R. Carlson, S. Magnussen, X.-R. Wand & A.E. Szmidt, 1992. Paternal chloroplast DNA inheritance in Pinus contorta and Pinus banksiana: independence of paternal species or cross direction. J Heredity 83: 419–422.

    Google Scholar 

  • Doudrick, R.L., J.S. Heslop-Harrison, C.D. Nelson, T. Schmidt, W.L. Nance & T. Schwarzacher, 1995. Karyotype of slash pine (Pinus elliottii var. Elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Heredity 86: 289–296.

    Google Scholar 

  • D'Ovidio, R., G. Scarascia Mugnozza & O. Tanzarella, 1990. Ribosomal RNA structure in some Populus L. species and their hybrids. Plant Syst Evol 173: 187–196.

    Google Scholar 

  • Doyle, J.J. & R.N. Beachy, 1985. Ribosomal variation in soybean (Glycine) and its relatives. Theor Appl Genet 70: 369–376.

    CAS  Google Scholar 

  • Drewry, A., 1988. The G-banded karyotype of Pinus resinosa Ait. Silvae Genet 37: 218–221.

    Google Scholar 

  • Döring, H.-P. & P. Starlinger, 1986. Molecular genetics of transposable elements in plants. Ann Rev Genet 20: 175–200.

    PubMed  Google Scholar 

  • Downie, S.R. & J.D. Palmer, 1992. Use of chloroplast DNA rearrangements in restructuring plant phylogeny. In: P.S. Soltis, D. Soltis & J.J. Doyle (Eds.), Molecular Systematics in Plants, pp. 14–35. Chapman and Hall, New York.

    Google Scholar 

  • Echt, C.S. & C.D. Nelson, 1997. Linkage mapping and genome length in eastern pine (Pinus strobes L.). Theor Appl Genet 94: 1031–1037.

    CAS  Google Scholar 

  • Echt, C.S., P.M. Marquardt, M. Hseih & R. Zahorchak, 1996. Characterization of microsatellite markers in eastern white pine. Genome 39: 1102–1108.

    PubMed  CAS  Google Scholar 

  • Echt, C.S., G.G. Vendramin, C.D. Nelson & Marquardt, P. 1999. Microsatellite DNA as shared genetic markers among conifers. Can J For Res 29: 365–371.

    CAS  Google Scholar 

  • Ellis, D.D., D.E. McCabe, S. McInnis et al., 1993. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11: 84–89.

    CAS  Google Scholar 

  • English, J.J., E. Mueller & D.C. Baulcombe, 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8: 179–188.

    PubMed  CAS  Google Scholar 

  • Eustace, L.J., C.S. Kinlaw & C.G. Williams, 1998. Conifer cDNA sequences are highly conserved among eukaryotic genomes. Texas J Sci 50: 75–84.

    CAS  Google Scholar 

  • Fagard, M. & Vaucheret, H. 2000. (Trans)gene silencing in plants: How many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51: 167–194.

    PubMed  CAS  Google Scholar 

  • Faivre-Rampant, P., S. Jeandroz, F. Lefevre et al., 1992. Ribosomal DNA studies in Populus deltoids, P. nigra, P. trichocarpa, P. maximowiczii, and P. alba. Genome 35: 733–740.

    CAS  Google Scholar 

  • Federoff, N. 2000. Transposons and genome evolution in higher plants. In: J. Ayala, W.M. Fitch & M.T. Clegg (Eds), Variation and Evolution in Plants and Microorganisms, pp. 165–186. National Academy Press, Washington, D.C.

    Google Scholar 

  • Fillatti, J.J., J. Selmer, B. McCown, B. Haissig & L. Comai, 1987. Agrobacterium-mediated transformation and regeneration in Populus. Mol Gen Genet 206: 192–199.

    CAS  Google Scholar 

  • Finnegan, J. & D. McElroy, 1994. Transgene inactivation: plants fight back. Bio/Technology 12: 833–888.

    Google Scholar 

  • Finnegan, E.J., R.K. Genger, W.J. Peacock & E.S. Dennis, 1998. DNA methylation in plants. Annu Re Plat Physiol Plant Mol Biol 49: 223–247.

    CAS  Google Scholar 

  • Fladung, M., 1999. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260: 574–581.

    PubMed  CAS  Google Scholar 

  • Fladung, M. & M.R. Ahuja, 1997. Excision of maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen. Plant Mol Biol 33: 1097–1103.

    PubMed  CAS  Google Scholar 

  • Fladung, M., S. Kumar & M.R. Ahuja, 1997. Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Research 6: 111–121.

    CAS  Google Scholar 

  • Flavell, R., 1980. The molecular characterization and organization of plant chromosomal DNA sequences. Ann Rev Plant Physiol 31: 569–596.

    CAS  Google Scholar 

  • Flavell, R., 1986. The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol Cell Biol 3: 251–274.

    CAS  Google Scholar 

  • Franklin, E.C., 1970. Survey of mutant forms and inbreeding depression in species of family Pinaceae. Research Paper SE-61. Southeastern Forest Experiment Station, Ashville, NC. 190

    Google Scholar 

  • Gadek, P.A., D.L. Alpers, M.M. Heselwood & C.J. Quin, 2000. Relationship within Cupressaceae sensu lato: A combined morphological and molecular approach. Am J Bot 87: 1044–1057.

    PubMed  CAS  Google Scholar 

  • Gale, M.D. & K.M. Devos, 1998. Plant comparative genetics after 10 years. Science 282: 656–659.

    PubMed  CAS  Google Scholar 

  • Gebhardt, C., E. Ritter, A. Barone et al., 1991. RFLP maps of potato and their alignment with the homolgous tomato genome. Theor Appl Genet 83: 49–57.

    Google Scholar 

  • Gocmen, B, K.D. Jermstad, D.B. Neale & Z. Kaya, 1996. A partial genetic linkage map of Taxus brevofolia Nutt. Using random amplified DNA polymorphic DNA markers. Can J For Res 26: 497–503.

    CAS  Google Scholar 

  • Goncharenko, G.G., A.E. Padutov & L.V. Khotyljova, 1998. Genetic mapping of allozyme loci in four two-needle pine species of Europe. Forest Genetics 5: 103–118.

    Google Scholar 

  • Gorman, S.W., R.D. Teasdale & C.A. Cullis, 1992. Structre and organization of the 5S rNA genes (5S DNA) in Pinus radiata (Pinaceae). Plant Syst Evol 183: 223–234.

    CAS  Google Scholar 

  • Govindraju, D.R. & C.A. Cullis, 1992. Ribosomal DNA variation among populations of a Pinus rigida Mill. (patch pine) ecosystem: I. Distribution of copy numbers. Heredity 69: 133–140.

    Google Scholar 

  • Govindraju, D.R., D.B. Wagner, G.P. Smith & B.P. Dancik, 1988. Chloroplast DNA variation within individual trees of Pinus banksiana-Pinus contorta sympatric region. Can J For Res 18: 1347–1350.

    Google Scholar 

  • Grattapaglia, D., 2000. Molecular breeding of Eucalyptus. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1, pp. 451–474. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Grattapaglia, D. & H.D. Bradshaw, 1994. Nuclear DNA amounts of commercially important Eucalyptus species and hybrids. Can. J For Res 24: 1074–1078.

    Google Scholar 

  • Grattapaglia, D., F.L. Bertolucci & R.R. Sederoff, 1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet 90: 933–947.

    CAS  Google Scholar 

  • Grattapaglia, D. & R.R. Sederoff, 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: Maping strategy and RAPD markers. Genetics 137: 1121–1137.

    PubMed  CAS  Google Scholar 

  • Groover, A.T., M.E. Devey, T. Fiddler et al., 1994. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138: 1293–1300.

    PubMed  CAS  Google Scholar 

  • Guttenberger, H., B. Köhler & Z. Borzan, 1996. Chromosome banding for identification of the chromosomes of Norway spruce. Forest Genet 3: 167–171.

    Google Scholar 

  • Harkins, D.M., G.N. Johnson, P.A. Skaggs et al., 1998. Saturation mapping for a major gene for resistance to white pine blister rust in sugar pine. Theor Appl Genet 97: 1355–1360.

    CAS  Google Scholar 

  • Harris, S.A. & R. Ingram, 1991. Chloroplast DNA and biosystematics: The effect of intraspecific diversity and plastid transmission. Taxon 40: 393–412.

    Google Scholar 

  • Harry, D.E., B. Temesgen & D.B. Neale, 1998. Codominant PCRbased markers for Pinus taeda developed from mapped cDNA clones. Theor Appl Genet 97: 327–336.

    CAS  Google Scholar 

  • Hauge, B.M., S.M. Hanley, S. Cartinhour et al., 1993. An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant J 3: 745–754.

    CAS  Google Scholar 

  • Heuchelin, S.A., L. Jouanin, N.B. Klopfenstein & H.S. McNabb, 1997. Potential of proteinase inhibitor for enhanced resistance to Populus arthopod and pathogen pests. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 173–177. Gen Tech Rep RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Heslop-Harrison, J.S., A. Brandes, S. Takata et al., 1997. The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100: 197–204.

    PubMed  CAS  Google Scholar 

  • Hipkins, V., K. Krutovskii & S.H. Strauss, 1994. Organelle genomes in conifers: Structure, evolution, and diversit. Forest Genetics 4: 179–189.

    Google Scholar 

  • Hipkins, V., K.A. Marshall, D.B. Neale, W.H. Rottmann & S.H. Strauss, 1995. A mutation hotspot in the chloroplast genome of a conifer (Douglas fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet 27: 572–579.

    PubMed  CAS  Google Scholar 

  • Hiratsuka, J., H. Shimada, R. Whittier et al., 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid inversion during the evolution of cereals. Mol Gen Genet 217: 185–194.

    PubMed  CAS  Google Scholar 

  • Hirochika, H., 1993. Activation of tobacco retrotransposon during tissue culture. EMBO J 12: 2521–2528.

    PubMed  CAS  Google Scholar 

  • Hirochika, H., K. Sugimoto, Y. Otsuki, H. Tsugawa & M. Kanda, 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–778.

    PubMed  CAS  Google Scholar 

  • Holland, L., J.E., J.E. Gemmell, J.A. Charity & C. Walter, 1997. Foreign gene transfer into Pinus radiata cotyledon by Agrobacterium tumefaciens. NZ J Forestry 27: 289–304.

    CAS  Google Scholar 

  • Hulbert, S.H., T.E. Richter, J.D. Axtel & J.L. Bennetzen, 1990. Genetic mapping and characterization of sorgham and related crops. Proc Natl Acad Sci USA 87: 4251–4255.

    PubMed  CAS  Google Scholar 

  • Ingelbrecht, I., H. van Houdt, M. van Montagu & A. Depicker, 1994. Posttranscriptional silencing of reporter transgenes in tobacco correlate with DNA methylation. Proc Natl Acad Sci USA 91: 10502–10506.

    PubMed  CAS  Google Scholar 

  • Jermstad, K.D., D.L. Bassoni, C.S. Kinlaw & D.B. Neale, 1998. Partial DNA sequencing of Douglas fir cDNA used in RFLP mapping. Theor Appl Genet 97: 771–776.

    CAS  Google Scholar 

  • Jermstad, K.D., D.L. Bassoni, K.S. Jech, N.C. Wheeler & D.B. Neale, 2000. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir: I. Timing of vegetative flush. Theor Appl Genet (in press).

  • Jermstad, K.D., D.L. Bassoni, N.C. Wheeler, T.S. Anekonda, S.N. Aitkin, W.T. Adams & D.B. Neale, 2000. Mapping quantitative trait loci controlling adaptive traits in coastal Douglas-fir: II. Spring and fall cold-hardiness. Theor Appl Genet (in press).

  • Jermstad, K.D., D.L. Bassoni, N.C. Wheeler & D.B. Neale, 1998. A sex-averaged genetic map in coastal Douglas fir ((Pseudotsuga menziesii [Mirab.] Franco var 'menziesii') based on RFLP and RAPD markers. Theor Appl Genet 97: 762–770.

    CAS  Google Scholar 

  • Jones, J.D.G., G. Bishop, B. Carroll et al., 1992. Prospects for establishing a tomato gene tagging system using the maize transposon Activator (Ac). Proc Royal Soc Edinburgh 99B: 107–119.

    Google Scholar 

  • Jorgensen, R.A., 1995. Cosuppression, flower color patterns, and metastable gene expression states. Science 268: 686–691.

    CAS  PubMed  Google Scholar 

  • Jouanin, L., T. Goujon, V. de Nadaï et al., 2000. Lignification in transgenic poplars with extremely reduced caffeic acid o-methyltransferase activity. Plant Physiol 123: 1363–1373.

    PubMed  CAS  Google Scholar 

  • Jouanin, L. & G. Pilate, 1997. Gene expression studies. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 65–69. Gen. Tech. Rep. RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Kamm, A., R.L. Doudrick, J.S. Heslop-Harrison & T. Schmidt, 1996. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliotti and other gymnosperms. Proc Natl Acad Sci USA 93: 2708–2713.

    PubMed  CAS  Google Scholar 

  • Karnosky, D.E., G.K. Podila, D. Shin & D.E. Riemenschneider, 1997. Differential expression of aroA gene in transgenic poplar: influence of promoter and ozone stress. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 70–73. Gen. Tech. Rep. RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Karvonen, P. & O. Savolainen, 1993. Variation and inheritance of ribosomal DNA in Pinus sylvastris L. (Scots pine). Heredity 71: 614–622.

    CAS  Google Scholar 

  • Karvonen, P., M. Karjalainen & O. Savolainen, 1993. Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88: 59–68.

    CAS  Google Scholar 

  • Kaya, Z. & D.B. Neale, 1995. Linkage mapping in Turkish red pine (Pinus brutia Ten.) using random amplified polymorphic DNA (RAPD) genetic markers. Silvae Genet 44: 110–116.

    Google Scholar 

  • Kaya, Z., M.M. Sewell & D.B. Neale, 1999. Identification of quantitative trait loci influencing height-growth and diameterincrement growth in loblolly pine (Pinus taeda L.). Theor Appl Genet 98: 586–592.

    CAS  Google Scholar 

  • Khoshoo, T.N., 1959. Polyploidy in gymnosperms. Evolution 13: 24–39.

    Google Scholar 

  • Khoshoo, T.N., 1961. Chromosome numbers in gymnosperms. Silvae Genet 10: 1–9.

    Article  Google Scholar 

  • Kidwell, M.G. & D.R. Lisch, 2001. Transposable elements, parasitic DNA, and genome evolution. Evolution 55: 1–24.

    PubMed  CAS  Google Scholar 

  • Kim, M.-S., N.B. Klopfenstein & Y.W. Chun, 1997. Agrobacterium mediated transformation of Populus. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 51–59. Gen Tech Rep RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Kinlaw, C.S., T. Ho, S.M. Gerttula et al., 1996. Gene discovery in loblolly pine through cDNA sequencing. In: M.R. Ahuja, W. Boerjan & D.B. Neale (Eds.), pp. 175–182. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kinlaw, C.S. & D.B. Neale, 1997. Complex gene families in pine genomes. Trends Plant Sci 2: 356–359.

    Google Scholar 

  • King, L.M. & B.A. Schall, 1989. Ribosomal-DNA variation and distribution in Rubeckia missouriensis. Evolution 43: 1117–1119.

    Google Scholar 

  • Kinian, S.F. & C.F. Quiros, 1992. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84: 544–554.

    Google Scholar 

  • Kinloch, B.B., 1992. Distribution and frequency of a gene for resistance to white pine blister rust in natural populations of sugar pine. Can J Bot 70: 1319–1323.

    Google Scholar 

  • Klopfenstein, N.B., H.S. McNabb, E.R. Hart et al., 1993. Transformation of Populus hybrids to study and improve pest resistance. Silvae Genet 42: 86–90.

    Google Scholar 

  • Konieczny, A. & F.M. Ausubel, 1993. A procedure for mapping Arabidopsis mutations using c-dominant ecotype-specific PCR based markers. Plant J 4: 403–410.

    PubMed  CAS  Google Scholar 

  • Kossack, D.S. & C.S. Kinlaw, 1999. IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pine. Plant Mol Biol 39: 417–426.

    PubMed  CAS  Google Scholar 

  • Kooter, J.M., M.A. Matzke & P. Meyer, 1999. Listening to the silent genes: Transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4: 340–347.

    PubMed  Google Scholar 

  • Kriebel, H.B., 1985. DNA sequence components of the Pinus strobes nuclear genome. Can J For Res 15: 1–4.

    CAS  Google Scholar 

  • Kriebel, H.B., 1988. Molecular biology in forestry research: when is it relevant and how can we use it? In: J.E. Hällgren (Ed.), Molecular Genetics of Forest Trees, pp. 5–18. Swedish University of Agriculture, Umeå.

    Google Scholar 

  • Kriebel, H.B., 1993. Molecular structure of forest trees. In: M.R. Ahuja & W.J. Libby (Eds.), Clonal Forestry I. Genetics and Biotechnology, pp. 224–240. Springer Verlag, Berlin.

    Google Scholar 

  • Krupkin, A.B., A. Liston & S.H. Strauss, 1996. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. Am J Bot 83: 489–498.

    Google Scholar 

  • Krutovskii, K.V., S.S. Vollmer, F.C. Sorensen, W.T. Adams, S.J. Knapp & S.H. Strauss, 1998. RAPD genome maps of Douglas fir. J Heredity 89: 197–205.

    CAS  Google Scholar 

  • Kubisiak, T.L., C.D. Nelson, W.L. Nance & M. Stine, 1996. Comparison of RAPD linkage maps constructed for a single longleaf pine from both haploid and diploid mapping populations. Forest Genetics 3: 203–211.

    Google Scholar 

  • Kumar, A. & J.L. Bennetzen, 1999. Plant retrotransposons. Ann Rev Genet 33: 479–532.

    PubMed  CAS  Google Scholar 

  • Kumpatla, S.P., M.B. Chandrasekharan, L.M. Iyer, G. Li & T.C. Hall, 1998. Genome intruder scanning and modulation systems and Transgene silencing. Trends Plant Sci 3: 97–104.

    Google Scholar 

  • Kuramoto, N., Kondo, T., Fujisawa, Y., Nakat, R., Hayashi, E. & Goto, Y. 2000. Detection of quantitative trait loci for wood strength in Cryptomeria japonica. Can J For Res 30: 1525–15333.

    CAS  Google Scholar 

  • Kurata, N., G. Moore, Y. Nagamura et al., 1994. Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.

    CAS  Google Scholar 

  • Kusumi, J., Y. Tsumura, H. Yoshimaru & H. Tachida, 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL, trnL-trnF, and trnL intron sequences. Am J Bot 87: 1480–1488.

    PubMed  CAS  Google Scholar 

  • Lapitan, N.L.V., 1992. Organization and evolution of higher plant nuclear genomes. Genome 35: 171–181.

    CAS  Google Scholar 

  • Lefort, F., C. Echt, R. Streiff & G.G. Vendramin, 1999. Microsatellite sequences: a new generation of molecular markers for forest trees. Forest Genet 6: 15–20.

    Google Scholar 

  • Leple, J.C., M. Bonade-Betino, S. Augustine et al., 1995. Toxicity to Chrysomela tremula (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cystein proteinase inhibitor. Mol Breed 1: 319–328.

    CAS  Google Scholar 

  • Levan, G., J. Szpirer, C. Szpirer, K. Klinga, C. Hanson & M.Q. Islam, 1991. The gene map of Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10: 699–718.

    PubMed  CAS  Google Scholar 

  • Levee, V., E. Garin, K. Klimaszewska & A. Seguin. 1999. Stable genetic transformation of white pine (Pinus strobes L.) after cocultivation of embryonic tissues with Agrobacterium tumefaciens. Mol Breed 5: 429–440.

    CAS  Google Scholar 

  • Lidholm, J. & P. Gustafsson, 1991. The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet 20: 161–166.

    PubMed  CAS  Google Scholar 

  • Liston, A., W.A. Robinson, J.M. Oliphant & E.R. Alvarez-Buylla, 1996. Length variation in the nuclear ribosomal DNA internal transcribed spacer of non-flowering seed plants. Syst Bot 21: 109–120.

    Google Scholar 

  • Liu, Z. & G.R. Furnier, 1993. Inheritance and linkage of allozymes and RFLPs in trembling aspen. J Heredity 84: 419–424.

    CAS  Google Scholar 

  • Long, E.O. & I.B Dawid, 1980. Repeated genes in eukaryotes. Annu Rev Plant Biochem 49: 727–764.

    CAS  Google Scholar 

  • Lubaretz, O., J. Fuchs, R. Ahne, A. Meister & I. Schubert, 1996. Karyotyping of three Pinaceae species via fluorescence in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92: 411–416.

    Google Scholar 

  • MacKay, J.J., D.M. O'Malley, T. Presnell, F.L. Booker, M.M. Campbell, R.W. Whetten & R.R. Sederoff, 1997. Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94: 8255–8260.

    PubMed  CAS  Google Scholar 

  • Mackenzie, S. & L. McIntosh, 1999. Higher plant mitochondria. Plant Cell 11: 571–585.

    PubMed  CAS  Google Scholar 

  • Mandel, M.A., C. Gutafson-Brown, B. Savage & M.F. Yanofsky, 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETLA1. Nature 360: 273–277.

    PubMed  CAS  Google Scholar 

  • Marques, C.M., J. Vasquez-Kool, V.J. Carocha, J.G. Ferreira, D.M. O'Malley, B.-H. Liu & R. Sederoff, 1999. Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globules. Theor Appl Genet 99: 936–946.

    Google Scholar 

  • Marshall, K.A. & D.B. Neale, 1992. The inheritance of mitochondrial DNA in Douglas fir (Pseudotsuga menziesii). Can J For Res 22: 73–75.

    Article  CAS  Google Scholar 

  • McCough, S.R., 2001. Genomics and synteny. Plant Physiol 125: 152–155.

    Google Scholar 

  • McMullen, M.D., P.F. Byrne, M.E. Snook et al., 1998. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA 95: 1996–2000.

    PubMed  CAS  Google Scholar 

  • Mejnartowicz, M., 1991. Inheritance of chloroplast DNA in Populus. Theor Appl Genet 82: 717–720.

    Google Scholar 

  • Meilan, R. & S.H. Staruss, 1997. Poplar genetically engineered for reproductive sterility and accelerated flowering. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 212–219. Gen Tech Rep RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • Meinke, D.W., M. Cherry, C. Dean, S.D. Rounsley & M. Koornneef, 1998. Arabidopsis thaliana: a model plant for genome analysis. Science 282: 662–682.

    PubMed  CAS  Google Scholar 

  • Mellerowicz, E.J., K. Horgan, A. Walden, A. Coker & C. Walter, 1998. PRFLL - a Pinus radiata homologoue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordial. Planta 206: 619–629.

    PubMed  CAS  Google Scholar 

  • Miksche, J.P. & Y. Hotta, 1973. DNA base composition and repetitious DNA in several conifers. Chromosoma 41: 29–36.

    CAS  Google Scholar 

  • Minocha, S.C., 2000. Optimization of the expression of a transgene in plants. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. I., pp. 1–30. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mirov, M.T., 1967. The Genus Pinus. The Ronald Press Company, New York.

    Google Scholar 

  • Mitton, J.B., 1994. Molecular approaches to population biology. Annu Rev Ecol Syst 25: 45–69.

    Google Scholar 

  • Mukai, Y., Y Suyama, Y. Tsumura et al., 1995. A linkage map of sugi (Cryptomeria japonica) based on RFLP, RAPD, and isozyme loci. Theor Appl Genet 90: 835–840.

    CAS  Google Scholar 

  • Murray, B.G., 1998. Nuclear DNA amounts in gymnosperms. Ann Bot 82(Supplement A): 3–15.

    CAS  Google Scholar 

  • Nagl, W., 1995. Cdc2-kinase, cyclins and the switch from proliferation to polyploidization. Protopamsma 188: 143–150.

    CAS  Google Scholar 

  • Neale, D.B., 1998. Molecular genetic approaches to measuring and conserving adaptive genetic diversity. In: N. Zencirci, Z. Kaya, Y. Anikster & W.T. Adams (Eds), Proceedings on the International Symposium on In Situ Conservation of Plant Genetic Diversity, pp. 385–390. Published by CRIFC, Turkey.

  • Neale, D.B., M.E. Devey, K.D. Jermstad, M.R. Ahuja, M.C. Alosi & K.A. Marshall, 1992. Use of DNA markers in forest tree improvement and research. New Forests 6: 391–407.

    Google Scholar 

  • Neale, D.B. & D.E. Harry, 1994. Genetic mapping in forest trees: RFLPs, RAPDs and beyond. AgBiotech News and Infor 6: 107N–114N.

    Google Scholar 

  • Neale, D.B., C.S. Kinlaw & M.M. Sewell, 1994. Genetic mapping and DNA sequencing of the loblolly pine genome. Forest Genet 4: 197–206.

    Google Scholar 

  • Neale, D.B., K.A. Marshall & D.E. Harry, 1991. Inheritance of chloroplast and mitochondrial DNA in incense-cedar (Calocedrus decurrens). Can J For Res 21: 717–720.

    CAS  Google Scholar 

  • Neale, D.B., K.A. Marshall & R.R. Sederoff, 1989. Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proc Natl Acad Sci USA 86: 9347–9349.

    PubMed  CAS  Google Scholar 

  • Neale, D.B. & R.R. Sederoff, 1988. Inheritance and evolution of conifer organelle genomes. In: J.W. Hanover & D.E. Keatley (Eds.), Genetic Manipulation of Woody Plants, pp. 251–264.

  • Neale, D.B. & R.R. Sederoff, 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77: 212–216.

    Google Scholar 

  • Neale, D.B. & R.R. Sederoff, 1996. Genome mapping in gymnosperms: A case study in loblolly pine (Pinus taeda L.). In: A.H. Paterson (Ed.), Genome Mapping in Plants, pp. 309–319. R.G. Lander Company, New York.

    Google Scholar 

  • Neale, D.B., N.C. Wheeler & A.W. Allard, 1986. Paternal inheritance of chloroplast DNA in Douglas fir. Can J For Res 16: 1152–1154.

    CAS  Google Scholar 

  • Nelson, C.D., W.L. Nance & R.L. Doudrick, 1993. A partial genetic map of slash pine (Pinus elliottii Engelm var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet 87: 145–151.

    CAS  Google Scholar 

  • Nelson, C.D., T.L. Kubisiak, M. Stine & W.L. Nance, 1994. A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs. J Heredity 85: 433–439.

    CAS  Google Scholar 

  • Noh, E.W. & J.S. Lee, 1997. Molecular genetic analysis of Populus chloroplast DNA. In: N.B. Klopfenstein, Y.W. Chun, M.-S. Kim & M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering and Molecular Biology of Populus, pp. 143–149. Gen Tech Rep RM-GTR-297. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins.

    Google Scholar 

  • O'Brien, I.E.W., D.R. Smith, R.C. Gardner & B.G. Murray, 1996. Flow cytometric determination of genome size in Pinus. Plant Science 115: 91–99.

    Google Scholar 

  • O'Brien, S.J., M. Menotti-Raymond, W.J. Murphy et al., 1999. The promise of comparative genomics in mammals. Science 286: 458–480.

    PubMed  Google Scholar 

  • Ohri, D. & M.R. Ahuja, 1990. Giemsa C-banded karyotype in Quercus L. (oak). Silvae Genet 39: 216–219.

    Google Scholar 

  • Ohri, D. & M.R. Ahuja, 1991. Giemsa C-banding in Fagus sylvatica L., Betula pendula Rorth and Populus tremula L. Silvae Genet 40: 72–75.

    Google Scholar 

  • Ohri, D. & T.N. Khoshoo, 1986. Genome size in gymnosperms. Plant Syst Evol 153: 119–132.

    Google Scholar 

  • Owens, J.N. & S.J. Morris, 1990. Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. Pollen tube and archegonial development. Am J Bot 77: 433–445.

    Google Scholar 

  • Owens, J.N. & S.J. Morris, 1992. Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. II. Fertilization and proembryo development. Am J Bot 78: 1515–1527.

    Google Scholar 

  • Palmer, J.D., 1985. Comparative organization of chloroplast genomes. Ann Rev Genet 19: 325–354.

    PubMed  CAS  Google Scholar 

  • Palmer, J.D., 1987. Chloroplast DNA evolution and biosytematic uses of chloroplast DNA variation. Am Naturalist 130: S6-S29.

    CAS  Google Scholar 

  • Palmer, J.D., 1992. Chloroplast and mitochondrial genome evolution in land plants. In: R.G. Hermann (Ed), Plant Gene Research: Cell Organelles, pp. 99–133. Springer Verlag, Vienna.

    Google Scholar 

  • Palmer, J.D., D. Soltis & P. Soltis, 1992. Large size and complex structure of mitochondrial DNA in two nonfloweing land plants. Curr Genet 21: 125–129.

    PubMed  CAS  Google Scholar 

  • Palmer, J.D. & D.B. Stein, 1986. Conservation of chloroplast genome structure among vascular plants. Curr Genet 10: 823–833.

    CAS  Google Scholar 

  • Palmer, J.D., K.L. Adams, Y. Cho, C.L., Parkinson, Y.-L. Qui & K. Song. 2000. Dynamic of plant mitochondrial genome: Mobile genes and introns and highly variable mutation rates. In: J. Ayala, W.M. Fitch & M.T. Clegg (Eds), Variation and Evolution in Plants and Microorganisms, pp. 35–57. National Academy Press, Washington, D.C.

    Google Scholar 

  • Paterson, A.H., Bowers, J.E., Burow, M.D. et al., 2000. Comparative genomics of plant chromosomes. Plant Cell 12: 1523–1539.

    PubMed  CAS  Google Scholar 

  • Pederick, L.A., 1970. Chromosome relationships between pinus species. Silvae Genet 19: 171–179.

    Google Scholar 

  • Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J. & Whitkus, R. 1994. Costruction of RFLP map in sorghum and comparative mapping in maize. Genome 37: 236–243.

    CAS  PubMed  Google Scholar 

  • Philipp, U., P. Wehling & G. Wricke, 1994. A linkage map of rye. Theor Appl Genet 88: 243–248.

    CAS  Google Scholar 

  • Pichot, C. & M. El Maataoui, 1997. Flow cytometric evidence for multiple ploidy levels in the endosperm of some gymnosperm species. Theor Appl Genet 94: 865–870.

    Google Scholar 

  • Plomion, C., N. Bahrman, C.E. Durel & D.M. O'Malley, 1995a. Genome mapping of maritime pine (Pinus pinaster) using RAPD and protein markers. Heredity 74: 661–668.

    CAS  Google Scholar 

  • Plomion, C., D.M. O'Malley & C.E. Durel, 1995b.Genome analysis of maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open pollinated sees of the same individual. Theo Appl Genet 90: 1028–1034.

    CAS  Google Scholar 

  • Ponoy, B., Y.-P. Hong, J. Woods, B. Jaquish & J.E. Carlson, 1994. Chloroplast DNA diversity of Douglas fir in British Columbia. Can J For Res 24: 1824–1835.

    CAS  Google Scholar 

  • Pouteau, S., M-A. Grandbastien & M. Caboche, 1991. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10: 1911–1918.

    PubMed  CAS  Google Scholar 

  • Pouteau, S., M-A. Grandbastien & M. Boccara, 1994. Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J 5: 535–542.

    CAS  Google Scholar 

  • Quijada, A., A. Liston, P. Delgado, A. Vaquez-Lobo & E.R. Alvarez-Buylla, 1998. Variation in the nuclear ribosomal DNA internal transcribed spacer (ITS) region of Pinus rzedowskii revealed by PCR-RFLP. Theor Appl Genet 96: 539–544.

    CAS  Google Scholar 

  • Rajora, O.P. & B.P. Dancik, 1992. Chloroplast DNA inheritance in Populus. Theor Appl Genet 84: 280–285.

    Google Scholar 

  • Rajora, O.P., J.W. Barret, B.P. Dancik & C. Strobeck, 1992. Maternal transmission of DNA in interspecific hybrids of Populus. Curr Genet 22: 141–145.

    PubMed  CAS  Google Scholar 

  • Rake, A.W., J.P. Miksche, R.B. Hall K.M. Hanson, 1980. DNA reassociation kinetics for four conifers. Can J genet Cytol 22: 69–79.

    CAS  Google Scholar 

  • Ralph, J., J.J. MacKay, R.D. Hatfield, D.M. O'Malley, R.W. Whetten & R.R. Sederoff, 1997. Abnormal lignin in a loblolly pine mutant. Science 277: 235–239.

    PubMed  CAS  Google Scholar 

  • Riemenschneider, D.E., B.E. Haissig, J. Selmer & J.J. Fillatti, 1988. Expression of a herbicide tolerance gene in young plants of transgenic hybrid poplar clone. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants, pp. 73–80. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Riemenschneider, D.E. & B.E. Haissig, 1991. Producting herbicidetolerant Populus using genetic transformation mediated by Agrobacterium tumefaciens C58: A summary of recent research. In: M.R. Ahuja (Ed.), Woody Plant Biotechnology, pp. 247–263. Plenum Press, New York.

    Google Scholar 

  • Rogers, S.O. & A.J. Bendich, 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9: 509–520.

    CAS  Google Scholar 

  • Roth, R., I. Ebert & J. Schmidt, 1997. Trisomy associated with loss of maturation capacity in a long-term embryogenic culture of Abies alba. Theor Appl Genet 95: 353–358.

    Google Scholar 

  • Royo, J., N. Noss, D.P. Matton, S. Okamoto, A.E. Clarke & E. Newbigin, 1996. A retotransposon-like sequence linked to the S-locus of Nicotiana alata is expressed in style in response to touch. Mol Gene Genet 250: 180–188.

    CAS  Google Scholar 

  • SaghaiMaroof, M.A., K.M. Soliman, R.A. Jogensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018.

    CAS  Google Scholar 

  • Saghai Maroof, M.A., G.P. Yang, R.M. Biyashev, P.J. Maughan & Q. Zhang, 1996. Analysis of barley and rice genomes by comparative RFLP linkage mapping. Theor Appl Genet 92: 541–551.

    CAS  Google Scholar 

  • SanMiguel, P., A. Tikhinov, Y-K, Jin et al., 1996. Nester retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P. & J.L. Bennetzen, 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergenic retrotransposons. Ann Bot 82 (Suppl): 37–44.

    CAS  Google Scholar 

  • Saylor, L.C., 1972. Karyotype analysis of the genus Pinus - subgenus Pinus. Silvae Genet 21: 155–163.

    Google Scholar 

  • Schena, M., D. Shalon, R.W. Davis & P.O. Brown, 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    PubMed  CAS  Google Scholar 

  • Sederoff, R.R., 1987. Molecular mechanisms of mitochondrialgenome evolution in higher plants. Am Naturalist 130: S30–S45.

    CAS  Google Scholar 

  • Sederoff, R.R., 2000. Tree genomes:What will we understand about them by the year 2020 and how might we use that knowledge? In: C. Mátyás (Ed.), Forest Genetics and Sustainability, pp. 23–30. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sederoff, R. A.-M. Stomp, B. Gwynn et al., 1987. Application of recombinant DNA techniques to pines: A Molecular approach to genetic engineering in forestry. In: J.M. Bonga & D.J. Durzan (Eds.), Cell and Tissue Culture in Forestry, Vol.I., pp. 314–329. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Sederoff, R.R., J.J. MacKay, J. Ralph & R.D. Hatfield, 1999. Unexpected variation in lignin. Curr Opinion Plant Biol 2: 145–152.

    CAS  Google Scholar 

  • Sewell, M.M. & D.B. Neale, 2000. Mapping quantitative traits in forest trees. In: S.C. Jain & S.C Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1, pp. 407–423. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sewell, M.M., B.K. Sherman & D.B. Neale, 1999. A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-gneration pedigrees. Genetics 151: 321–330.

    PubMed  CAS  Google Scholar 

  • Sharp, P.A. & P.D. Zamore. 2000. RNA interference. Science 287: 2431–2433.

    PubMed  CAS  Google Scholar 

  • Sheppard, L.A., A.M. Brunner, W.H. Rottmann, R. Meilan & S.H. Strauss, 1996. Floral homoeotic genes for genetic engineering of reproductive sterility in poplars. In: M.R. Ahuja, W. Boerjan & D.B. Neale (Eds.), pp. 165–172. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sheppard, L.A. A.M. Brunner, K.V. Krutovskii et al., 2000. A DEFICIENS homologue from the dioecious tree black cotton wood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiol 124: 627–640.

    PubMed  CAS  Google Scholar 

  • Shinozaki, K., M. Ohme, M. Tanaka et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its organization and expression. EMBO J 5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Skinner, J.S., R. Meilan, A.M. Brunner & S.H. Strauss, 2000. Options for genetic engineering of floral sterility in forest trees. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 1., pp. 135–153. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Skov, E. & H. Wellendorf, 1998. A partial linkage map of Picea abies clone V6470 based on recombination of RAPD-markers in haploid megagametophytes. Silvae Genet 47: 273–282.

    Google Scholar 

  • Smith, D.N. & M.E. Devey, 1994. Occurrence and inheritance of microsatellite loci in Pinus radiata. Genome 37: 977–983.

    PubMed  CAS  Google Scholar 

  • Stam. M., J.N.M Mol & J.M. Kooter, 1997. The silence of genes in transgenic plants. Ann Bot 79: 3–12.

    CAS  Google Scholar 

  • Sterky, F., S. Regan, J. Karlsson et al., 1998. Gene discovery in the wood-forming tissues of poplar: Analysis of 5,696 expressed sequence tsgs. Proc Nat Acad Sci USA 95: 13330–13335.

    PubMed  CAS  Google Scholar 

  • Stine, M. & D.E. Keathley, 1990. Paternal inheritance of plastids in Engelmann spruce х blue spruce hybrids. J Heredity 81: 443–446.

    CAS  Google Scholar 

  • Stine, M., B.B. Sears & D.E. Keatley, 1989. Inheritance of plastids in interspecific hybrids of blue spruce and white spruce. Theo Appl Genet 78: 768–774.

    CAS  Google Scholar 

  • Stoehr, M.U. & L. Zsuffa, 1990. Induction of haploids in Populus maximowiczii via embryogenic callus. Plant Cell Tiss Org Cult 23: 49–58.

    Google Scholar 

  • Strauss, S.H., J.D. Palmer, G.T. Howe & A.H. Doerksen, 1988. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85: 3898–3902.

    PubMed  CAS  Google Scholar 

  • Strauss, S.H., A.H. Doerksen & J.R. Byrne, 1990. Evolutionary relationship of Douglas fir and its relatives (genus Pseudotsuga) from DNA restriction fragment analysis. Can J Bot 68: 1502–1510.

    CAS  Google Scholar 

  • Strauss, S.H., H.-P. Hong & V.D. Hipkins, 1993. High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata, and attenuata. Theor Appl Genet 86: 605–611.

    Google Scholar 

  • Strauss, S.H., W.H. Rottmann, A.M. Bruner & L.A. Sheppard, 1995. Genetic engineering of reproductive sterlity in forest trees. Mol Breed 1: 5–26.

    CAS  Google Scholar 

  • Sutton, B.C.S., D.J. Flanagan, J.R. Gawley, C.H. Newton, D.T. Lester & Y.A. El Kassaby, 1991. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Theor Appl Genet 82: 242–248.

    Google Scholar 

  • Szmidt, A.E. & X.-R. Wang, 2000. Genetic markers in forest genetics - the tunnel remains dark. In: C. Mátyás (Ed.), Forest Genetics and Sustainability, pp. 31–48. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Szmidt, A.E., T. Alden & J.-E. Hälgren, 1987. Paternal inheritance in chloroplast DNA in Larix. Plant Mol Biol 9: 59–64.

    CAS  Google Scholar 

  • Szmidt, A.E., Y.A. El Kassaby, A. Sigurgeirsson, T. Alden, D. Lindgren & J.E. Hälgren, 1988. Classifying seed lots of Picea glauca in zones of introgression using restriction analysis of chloroplast DNA. Theor Appl Genet 76: 841–845.

    CAS  Google Scholar 

  • Tanksley, S.D., 1993. Mapping plogenes. Annu Rev Genet 27: 205–223.

    PubMed  CAS  Google Scholar 

  • Tanksley, S.D., R. Bernatzky, N.L. Lapitan & H.P. Prince, 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85: 6419–6423.

    PubMed  CAS  Google Scholar 

  • Temesgen, B., D.B. Neale & D.E. Harry, 2000. Use of haploid mixtures and heteroduplex anaysis enhanced polymorphisms revealed by denaturing gradient gel electrophoresis. BioTechniques 28: 114–122.

    PubMed  CAS  Google Scholar 

  • Teutonico, R.A. & T.C. Osborn, 1994. Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89: 885–894.

    CAS  Google Scholar 

  • Tulsieram, L.K., J.C. Glaubitz, G. Kiss & J.E. Carlson, 1992. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Bio/Technology 10: 686–690.

    PubMed  CAS  Google Scholar 

  • Tsai, C.-H & S.H. Strauss, 1989. Dispersed repetitive sequences in the chloroplast genome of Douglas fir. Curr Genet 16: 211–218.

    PubMed  CAS  Google Scholar 

  • Tsay, Y.-P., M.J. Frank, T. Page, C. Dean & N.M. Crawford, 1993. identification of mobile endogenous transposons in Arabidopsis thaliana. Science 260: 342–344.

    PubMed  CAS  Google Scholar 

  • Tsudzuki, J., K. Nakashima, T. Tsudzuki, J. Hiratsuka, M. Shibata, T. Wakasugi & M. Sugiura, 1992. Chloroplast DNA of black pine retains a residual inverted repeat lacking rDNA genes: nucleotide sequences of trnQ, trnK, psbA, trnH, and absence of rps16. Mol Gene Genet 232: 206–214.

    CAS  Google Scholar 

  • Tsumura, Y., Y. Oghihara, T. Sasakuma & K. Ohba, 1993. Physical map of chloroplast DNA in sugi, Cryptomeria japonica. Theor Appl Genet 86: 166–172.

    CAS  Google Scholar 

  • Tsumura, Y., H. Taguch, Y. Suyama & K. Ohba, 1994. Geographical cline of chloroplast DNA variation in Abies mariesii. Theor Appl Genet 89: 922–926.

    Google Scholar 

  • Tsumura, Y., Y. Suyama, K. Yoshimura, N. Shirato & Y. Mukai, 1997. Sequence-tagged sites (STSs) of cDNA clones of Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94: 764–772.

    CAS  Google Scholar 

  • Tsumura, Y. & N. Tomaru, 1999. Genetic diversity of Cryptomeria japonica using co-dominant DNA markers based on sequencedtagged sites. Theor Appl Genet 98: 396–404.

    CAS  Google Scholar 

  • Tzfira, T., C.S. Vainstein & A. Altman, 1997. Agrobacterium mediated transformation of Populus tremula L. through direct shoot regeneration from stem segments. Physiol Plant 99: 554–561.

    CAS  Google Scholar 

  • Valkonen, J.P.T., M. Nygren, M. Ylönen & A. Mannonen, 1994. Nuclear DNA content of Pinus sylvestris (L.) as determined by laser flow cytometry. Genetica 92: 203–207.

    Google Scholar 

  • Van Bokland, R., N. Van der Geest, J.N.M. Mol & J.M. Kooter, 1994. Transgene-mediated suppression of of chalcone synthase expression in Perunia hybrida results from an increase in RNA turn over. Plant J 6: 861–877.

    Google Scholar 

  • Van Doorselaere, J., M. Baucher, E. Chognot et al., 1995. A novel lignin in trees with reduced o-methyltransferase activity. Plant J 8: 855–864.

    Google Scholar 

  • Von Aderkas, P. & J.M. Bonga, 1993. Plants from haploid tissues of Larix deciduas. Theor Appl Genet 87: 225–228.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker et al., 1995. AFLP: A new method for DNA fingerprinting. Nucleic Acid Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

  • Wagner, D.B., D.R. Govindraju, C.W. Yeatman & J.A. Pitel, 1989. Parental chloroplast DNA inheritance in a diallel cross of jack pine (Pinus banksiana Lamb.). J Heredity 80: 883–885.

    Google Scholar 

  • Wagner, D.B., W.L. Nance, C.D. Nelson, T. Li, R.N. Patel & D.R. Govindraju, 1992. Taxonomic patterns and inheritance of chloroplast DNA variation in a survey of Pinus echinata, P. elliottii, P. palustris, and P. taeda. Can J For Res 22: 683–689.

    CAS  Google Scholar 

  • Wakamiya, I., R.J. Newton & J.S. Price, 1993. Genome size and environmental factors in the genus Pinus. Am J Bot 80: 1235–1241.

    Google Scholar 

  • Wakasugi, T., J. Tsudzuki, S. Ito, K. Nakashima, T. Tsudzuki & M. Sugiura, 1994. Loss of all ndh genes as determined by se quencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91: 9794–9798.

    PubMed  CAS  Google Scholar 

  • Walter, C. & L.J. Grace, 2000. Genetic engineering of conifers for plantation forestry - Pinus radiata transformation. In: S.M. Jain & S.C. Minocha (Eds.), Molecular Biology of Woody Plants, Vol. 2., pp. 79–104. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Walter, C., L.J. Grace, S.S. Donaldson et al., 1999. An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can J For Res 29: 1539–1546.

    Google Scholar 

  • Walter, C., L.J. Grace, A. Wagner et al., 1998. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Reports 17: 460–468.

    CAS  Google Scholar 

  • Walter, E.R. & B.A. Schall, 1991. No variation is detected in the chloroplast genome of Pinus torreyana. Can J For Res 21: 1832–1835.

    Google Scholar 

  • Wang, M.L., M.D. Atkinson, C.N. Chinoy, K.M. Devos & M.D. Gale, 1992. Comparative RFLP-based genetic maps of barley chromosome 5 (1H) and rye chromsome 1R. Theor Appl Genet 84: 339–344.

    Google Scholar 

  • Wang, X.-R. & A.E. Szmidt, 1990. Evolutionary analysis of Pinus densata (masters), a putative Tertiary hybrid. 2. A study using species-specific chloroplast DNAmarkers. Theor Appl Genet 80: 641–647.

    CAS  Google Scholar 

  • Wang, X.-R. & A.E. Szmidt, 1993. Chloroplast DNA based phylogeny of Asian Pinus species (Pinaceae). Plant Syst Evol 188: 197–211.

    Google Scholar 

  • Wang, X.-R., A.E. Szmidt & H.N. Nguyen, 2000. The phylogenetic position of the endemic flat-needle pine Pinus krempfii (Pinaceae) from Vietnam, based on PCR-RFLP analysis of chloroplast DNA. Plant Syst Evol 220: 21–36.

    CAS  Google Scholar 

  • Weeden, N.F., F.J. Muehlbauer & G. Ladizinsky, 1992. Extensive conservation of linkage relationships between pea and lentil genetic maps. J Heredity 83: 123–129.

    Google Scholar 

  • Weigel, D., J. Alvarez, D.R. Smyth, M.F. Yanofsky & E.M. Meyerowictz, 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859.

    PubMed  CAS  Google Scholar 

  • Wenck, A.R., M. Quinn, R.W. Whetten, G. Pullman & R. Sederoff, 1999. High-frequency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39: 407–416.

    PubMed  CAS  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-transposons and MITEs: importrant players in the evolution of plant genomes. Curr Opinions Genet 5: 814–821.

    CAS  Google Scholar 

  • Whetten, R.W., J.J. MacKay & R.R. Sederoff, 1998. Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49: 585–609.

    PubMed  CAS  Google Scholar 

  • White, E.E., 1990. Chloroplast DNA in Pinus montocola.I. Physical map. Theor Appl Genet 79: 119–124.

    CAS  Google Scholar 

  • White, S.E., L.F. Habera & S.R. Wessler, 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796.

    PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Rafalski & S.V. Tingy, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18: 6531–6535.

    PubMed  CAS  Google Scholar 

  • Wolffe, A.P. & M.A. Matzke, 1999. Epigenetics: regulation through repression. Science 286: 481–486.

    PubMed  CAS  Google Scholar 

  • Wright, J.W., 1976. Introduction to Forest Genetics. Academic Press, New York.

    Google Scholar 

  • Yazdani, R., F.C. Yeh & J. Rimsha, 1995. Genomic mapping in Pinus sylvestris (L.) using random amplified polymorphic DNA markers. Forest Genetics 2: 109–116.

    Google Scholar 

  • Zimmer, E.A., E.R. Jupe & V. Walbot, 1988. Ribosomal gene structure, variation, and inheritance in maize and its ancestors. Genetics 120: 1125–1136.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, M. Recent advances in molecular genetics of forest trees. Euphytica 121, 173–195 (2001). https://doi.org/10.1023/A:1012226319449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012226319449

Navigation