Skip to main content
Log in

Nutritional Aspects of Western Lowland Gorilla (Gorilla gorilla gorilla) Diet During Seasons of Fruit Scarcity at Bai Hokou, Central African Republic

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Traditionally, gorillas were classified as folivores, yet 15 years of data on western lowland gorillas (Gorilla gorilla gorilla) show their diet to contain large quantities of foliage and fruit, and to vary both seasonally and annually. The consumption of fruit by gorillas at Bai Hokou, Central African Republic, is correlated with rainfall and ripe fruit availability (Remis, 1997a). We investigated the nutritional and chemical content of gorilla foods consumed at Bai Hokou during two seasons of fruit scarcity as measured by phenological observations and compared our findings with the nutrient content of gorilla foods at other African sites. We conclude that during lean times, Bai Hokou gorillas consumed fruits with higher levels of fiber and secondary compounds than those of other populations of western lowland or mountain gorillas. Conversely, leaves consumed by Bai Hokou gorillas were relatively low in fiber and tannins. Bai Hokou gorillas appeared to meet their nutritional needs by eating a combination of fruit and foliage. They ate fruits comparatively high in secondary compounds and fiber when necessary. While gorillas are selective feeders, wherever and whenever preferred foods are scarce, their large body size and digestive anatomy enable them to consume and process a broader repertoire of foods than smaller bodied-apes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Andrews, P. (1981). Species diversity and diet in monkeys and apes during the Miocene. In Stringer, C. B. (ed.), Aspects of human evolution, Taylor and Francis, London, pp. 25-61.

    Google Scholar 

  • AOAC (1996). Official Methods of Analysis of AOAC International. 16th ed., AOAC International, Gaithersburg, MD.

    Google Scholar 

  • Barnell, H. R., and Barnell, E. (1945). Studies in tropical fruits: The distribution of tannins within the banana and the changes in their condition and amount during ripening. Ann. Bot. NS 8(33): 71-99.

    Google Scholar 

  • Bate-Smith, E. C. (1972). Detection and determination of ellagitannins. Phytochemistry 11: 1153-1156.

    Google Scholar 

  • Bate-Smith, E. C. (1975). Phytochemistry of proanthocyanidins. Phytochemistry 14: 1107-1113.

    Google Scholar 

  • Bate-Smith, E. C. (1977). Astringent tannins of Acer species. Phytochemistry 16: 1421-1426.

    Google Scholar 

  • Bate-Smith, E. C. (1981). Astringent tannins of the leaves of Geranium species. Phytochemistry 20: 211.

    Google Scholar 

  • Bauchop, T. (1978). Digestion of leaves in vertebrate arboreal folivores. In Montgomery, G.G. (eds.), The Ecology of Arboreal Folivores, Smithsonian Institution Press, Washington, D.C., pp. 193-204.

    Google Scholar 

  • Berry, J. P. (1998). The Chemical Ecology of Mountain Gorillas (Gorilla gorilla beringei), With Special Reference to Antimicrobial Constituents in the Diet, PhD Dissertation, Cornell University, New York.

    Google Scholar 

  • Calvert, J. J. (1985). Food selection by western gorillas (Gorilla gorilla gorilla) in relation to food chemistry. Oecologia 65: 236-246.

    Google Scholar 

  • Carroll, R. W. (1997). Feeding Ecology of Lowland Gorillas (Gorilla gorilla gorilla) in the Dzanga-Sangha Dense Forest Reserve of the Central African Republic, Ph.D. thesis. Yale University, New Haven.

    Google Scholar 

  • Casimir, M. J. (1975). Feeding ecology and nutrition of an eastern gorilla group in the Mt. Kahuzi region (Republic of Zaire). Folia Primatologica 24: 81-136.

    Google Scholar 

  • Chivers, D. J., and Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. J. Morph. 166: 337-386.

    Google Scholar 

  • Nhivers, D. J., and Langer, P. (eds.) (1994). The Digestive System in Mammals: Food Form and Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Collet, J., Bourreau, E., Cooper, R. W., Tutin, C. E. G., and Fernandez, M. (1984). Experimental demonstration of cellulose digestion by Troglodytella gorillae, an intestinal ciliate of lowland gorillas. Int. J. Primatol. 5: 328.

    Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., and Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. Int. J. Primatol. 19(6): 971-999.

    Google Scholar 

  • Cork, S. J., and Foley, W. J. (1992). Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In Palo, R.T., and Robbins, C. T. (eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Data Description (1997). DataDesk vers. 6. Data Description, Inc., Ithaca, NY.

    Google Scholar 

  • Demment, M. W., and van Soest, P. J. (1985). A nutritional explanation of body-size patterns of ruminant and non-ruminant herbivores. Am. Nat. 125: 641-672.

    Google Scholar 

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350-356.

    Google Scholar 

  • Dudt, J. F., and Shure, D. J. (1994). The influence of light and nutrients on foliar phenolics and insect herbivory in Cornus florida and Liriodendron tulipifera. Ecology 75: 86-98.

    Google Scholar 

  • Fickel J., and Joest, B. A. (1997). Roe deer (Capreolus capreolus): properties of parotid and mixed saliva, In Proceedings of the Second Conference of the Nutrition Advisory Group/American Zoo and Aquarium Association on Zoo and Wildlife Nutrition, NAG/AZA, Ft.Worth, TX, USA.

    Google Scholar 

  • Fossey, D., and Harcourt, A. H. (1977). Feeding ecology of free-ranging mountain gorillas. In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, New York, pp. 415-449.

    Google Scholar 

  • Freeland, W. J., and Janzen, D. H. (1974). Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108: 269-289.

    Google Scholar 

  • Ganzhorn, J. U. (1989). Primate species separation in relation to secondary plant chemicals. Hum. Evol. 4(2): 125-132.

    Google Scholar 

  • Garber, P. A., and Lambert, J. E. (1998). Primates as seed dispersers: ecological processes and directions for future research. Am. J. Primatol. 45: 3-8.

    Google Scholar 

  • Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., Decoux, J. P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C., and Thiollay, J. M. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324-377.

    Google Scholar 

  • Glander, K. E. (1981). The impact of plant secondary compounds on primate feeding behavior. Ybk. Phys. Anthro. 25: 1-18.

    Google Scholar 

  • Goldsmith, M. L. (1996). Ecological Influences on the Ranging and Grouping Behavior of Western Lowland Gorillas at Bai Hokou, Central African Republic. Ph.D. Dissertation, SUNY Stony Brook, Stonybrook, New York.

    Google Scholar 

  • Goldsmith, M. L. (1999). Gorilla socioecology. In Dolhinow, P., and Fuentes, A. (eds.), The Nonhuman Primates, Mayfield Publishing, Mountain View, pp. 58-63.

    Google Scholar 

  • Goodall, A. G. (1977). Feeding and ranging behavior of a mountain gorilla group (Gorilla gorilla beringei) in the Tshiabinda-Kahuzi region (Zaire). In Cluton-Brock, T.H. (ed.), Primate Ecology: Studies of Feeding and Ranging Behavior in Lemurs, Monkeys and Apes, Academic Press, London, pp. 449-479.

    Google Scholar 

  • Groves, C. P. (1986). Systematics of the great apes. In Swindler, D. R., and Erwin, J. (eds.), Comparative Primate Biology v. 1. Systematics, Evolution and Anatomy, Alan R. Liss, New York, pp. 187-217.

    Google Scholar 

  • Hagerman, A. E. (1987). Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 13: 437-449.

    Google Scholar 

  • Hagerman, A. E., and Butler, L. G. (1991). Tannins and lignins. In Rosenthal, G. A., and Berenbaum, M. R. (eds.), Herbivores: Their Interaction With Secondary Plant Metabolites, 2nd ed. Vol. I. Academic Press, New York, USA.

    Google Scholar 

  • Harborne, J. B. (1988). The Flavonoids: Advances in Research Since 1980. Chapman and Hall, London, UK.

    Google Scholar 

  • Harborne, J. B. (1991). The chemical basis of plant defense. In Palo, R. T., and Robbins, C. T. (eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Hladik, C. M. (1978). Adaptive strategies of primates in relation to leaf-eating. In Montgomery, G.G. (ed.), The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, D.C. pp. 373-395.

    Google Scholar 

  • Hulme, A. C. (1971). The Biochemistry of Fruits and Their Products. Academic Press, London.

    Google Scholar 

  • Janzen, D. H. (1983). Physiological ecology of fruits and their seeds. In Lange, O. L., Nobel, P.S., Osmond, C. B., and Ziegler, H. (eds.), Physiological Plant Ecology III: Responses to the Chemical and Biological Environment, Springer-Verlag, New York, pp. 626-655.

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195-216.

    Google Scholar 

  • Kay, R. F., and Davies, A. G. (1994). Digestive physiology. In Davies, A. G., and Oates, J. F. (eds.), Colobine Monkeys, Their Ecology Behaviour and Evolution, Cambridge University Press, Cambridge, pp. 229-250.

    Google Scholar 

  • Kuroda, S., Nishihara, T., Suzuki, S., and Oko, R. A. (1996). Sympatric chimpanzees and gorillas in the Ndoki Forest, Congo, In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies, Cambridge University Press, Cambridge, pp. 71-81.

    Google Scholar 

  • Lambert, J. E. (1997). Digestive Strategies, Fruit Processing, and Seed Dispersal in the Chimpanzees (Pan troglodytes) and Redtail Monkeys (Cercopithecus ascanius) of Kibale National park, Uganda, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois.

    Google Scholar 

  • Martin, R. D., Chivers, D. J., Maclarnon, A. M., and Hladik, C. M. (1985). Gastrointestinal allometry in primates and other mammals. In Jungers, W. L. (ed.), Size and Scaling in Nonhuman Primates, Plenum Press, New York, pp. 61-89.

    Google Scholar 

  • Martin, J. S., Martin, M. M., and Bernays, E. A. (1987). Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J. Chem. Ecol. 3(3): 605-621.

    Google Scholar 

  • McKey, D. (1979). The distribution of secondary compounds within Plants. In Rosenthal, G. A. and Janzen, D. A. (eds.), Herbivores: Their Interaction with Secondary Plant Metabolites, Academic Press, New York, pp. 56-133.

    Google Scholar 

  • Meehan, T. (1997). Disease concerns in Lowland Gorillas. In Management of Gorillas in Captivity: Husbandry Manual, Gorilla Species Survival Plan, Ogden, J. and Wharton, D. (eds.), American Association of Zoos and Aquariums, Washington, DC.

    Google Scholar 

  • Mehansho, H., Butler, L. G., and Carlson, D. M. (1987). Dietary tannins and salivary proline-rich proteins: interactions, induction and defense mechanisms. Ann. Rev. Nutr. 7: 423-440.

    Google Scholar 

  • Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. Int. J. Primatol. 19: 513-548.

    Google Scholar 

  • Milton, K., and Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J. Nutr. 118: 1082-1088.

    Google Scholar 

  • Mole, S., and Waterman, P. G. (1987). Tannins as antifeedants to mammalian herbivores-still an open question? In Waller, G. R. (ed.), Allelochemicals: Role in Agriculture and Forestry, American Chemical Society Symposium Series, American Chemical Society Press, Washington, DC, pp. 572-587.

    Google Scholar 

  • Morris, E. R. (1987). Iron. In Mertz, W. (ed.), Trace Elements in Human and Animal Nutrition. 5th ed. Academic Press, New York.

    Google Scholar 

  • Mowry, C. B., Decker, B. S., and Shure, D. J. (1996). The role of phytochemistry in dietary choices of Tana River red colobus monkeys (Procolobus badius rufomitratus). Int. J. Primatol. 17: 63-84.

    Google Scholar 

  • Nijboer, J., Dierenfeld, E. S., Yeager, C. P., Bennett, E. L., Bleish, W., and Mitchell, A. H. (1997). Chemical composition of SouthEast Asian colobine foods. In Proceedings of the AZA Nutrition Advisory Group Conference, Fort Worth, Texas.

    Google Scholar 

  • Oates, J. F., Swain, T., and Zantovska, J. (1977). Secondary compounds and food selection by colobus monkeys. Biochem. Sys. Ecol. 5: 317-321.

    Google Scholar 

  • Parra, R. (1978). Comparison of foregut and hindgut fermentation in herbivores. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores, Smithsonian Press, Washington, D.C., pp. 205-229.

    Google Scholar 

  • Perrin, M. R. (1994). Herbivory and niche partitioning. In Chivers, D. J. and Langer, P. (eds.), The Digestive System in Mammals: Food, Form and Functioning, Cambridge University Press, Cambridge, pp. 128-149.

    Google Scholar 

  • Plumptre, A. J. (1995). The chemical composition of montane plants and its influence on the diet of large mammalian herbivores in the Parc National des Volcans, Rwanda. J. Zool. Lond. 235: 323-337.

    Google Scholar 

  • Popovich, D. G., Jenkins, D. J. A., Kendall, C. W. C., Dierenfeld, E. S., Carroll, R. W., Tariq, N., and Vidgen, E. (1997). The western lowland gorilla diet has implications for the health of humans and other hominoids. J. Nutr. 127: 2000-2006.

    Google Scholar 

  • Remis, M. J. (1994). Feeding ecology and positional behavior of lowland gorillas in the Central African Republic. Ph.D. Thesis, Yale University, New Haven, CT.

    Google Scholar 

  • Remis, M. J. (1997a). Gorillas as seasonal frugivores: use of variable resources. Am. J. Primatol. 43: 87-109.

    Google Scholar 

  • Remis, M. J. (1997b). Ranging and grouping patterns of a western lowland gorilla group at Bai Hokou, Central African Republic. Am. J. Primatol. 43: 110-130.

    Google Scholar 

  • Remis, M. J. (1999). Tree structure and sex differences in arboreality among western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Primates 40(2): 383-396.

    Google Scholar 

  • Remis, M. J. (2000). Initial Studies on the contributions of body size and gastrointestinal passage times to dietary flexibility among gorillas. Am. J. Phys. Anthro. 112: 171-180.

    Google Scholar 

  • Reynolds. V., Plumptre, A. J., and Greenham, J. (1998). Condensed tannins and sugars in the diet of chimpanzees (Pan troglodytes schweinfurthii) in the Budongo Forest, Uganda. Oecologia 115(3): 331-336.

    Google Scholar 

  • Rhodes, D. F., and Cates, R. G. (1976). Toward a general theory of plant anti-herbivore chemistry. Rec. Adv. Phytochem. 10: 168-213.

    Google Scholar 

  • Rogers, M. E., Maisels, F., Williamson, E. A., Fernandez, M., and Tutin, C. E. G. (1990). Gorilla diet in the Lope Reserve, Gabon: a nutritional analysis. Oecologia 84: 326-339.

    Google Scholar 

  • Rogers, M. E., Maisels, F., Williamson, E. A., Tutin, C. E. G., and Fernandez, M. (1992). Nutritional aspects of gorilla food choice in the Lope Reserve, Gabon. In Itoigawa, N., Sugiyama, Y., Sackett, G. P., and Thompson, R. K. R. (eds.), Topics in Primatology, v. 2: Behavior, Ecology and Conservation, University of Tokyo Press, Tokyo, pp. 385-394.

    Google Scholar 

  • Rosner, B. (1990). Fundamentals of Biostatistics. 3rd ed. PWS-Kent, Boston, MA, USA.

    Google Scholar 

  • Roy, S. N., and Mukherjee, S. (1979). Influence of tannins on certain aspects of iron metabolism: Part I-absorption and excretion in normal and anemic rats. Ind. J. Biochem. Biophys. 16: 93-98.

    Google Scholar 

  • Schaller, G. B. (1963). The Mountain Gorilla: Ecology and Behavior. Univ. Chicago, Chicago.

    Google Scholar 

  • Schoener, T. W. (1971). Theories of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369-404.

    Google Scholar 

  • Shure, D. J., and Wilson, L. A. (1993). Patch size effects on plant chemical defenses in successional openings in the Appalachians. Ecology 74: 55-67.

    Google Scholar 

  • Simmen, B., Josseaume, B., and Atramentowicz, M. (1999). Frugivory and Taste Responses to Fructose and Tannic Acid in a Prosimian Primate and a Didelphid Marsupial. J. Chem. Ecol. 25(2): 331-346.

    Google Scholar 

  • Spelman, L. H., Osborn, K. G., and Anderson, K. G. (1989). Pathogenesis of hemosiderosis in lemurs: role of dietary iron, tannin, and ascorbic acid. Zoo. Biol. 8: 239-251.

    Google Scholar 

  • Stahr, H. M. (1991). Analytical Methods in Toxicology. Wiley, NY.

    Google Scholar 

  • Strait, S. (1997). Tooth use and the physical properties of food. Evol. Anthro. 5(6): 199-211.

    Google Scholar 

  • Strickland, J. D. H., and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Fisheries Board of Canada, Ottawa, Canada.

    Google Scholar 

  • Swain, T. (1979). Tannins and lignins. In Rosenthal, G. A. and Janzen, D. H. (eds.), Herbivores: Their Interaction With Secondary Plant Metabolites, Academic Press, New York, pp. 657-682.

    Google Scholar 

  • Temerin, A. L., and Cant, J. G. H. (1983). The evolutionary divergence of old world monkeys and apes. Am. Nat. 122: 335-351.

    Google Scholar 

  • Tutin, C. E. G., and Fernandez, M. (1993a). Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lope Reserve, Gabon. Am. J. Primatol. 30: 195-211.

    Google Scholar 

  • Tutin, C. E. G., and Fernandez, M. (1993b). Fruit production in some tropical forest trees in Gabon. J. Trop. Ecol. 9: 241-248.

    Google Scholar 

  • Tutin, C. E. G., and Fernandez, M. (1993c). Faecal analysis as a method of describing diets of apes: Examples from sympatric gorillas and chimpanzees at Lope. Gabon. Tropics 2: 189-198.

    Google Scholar 

  • Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., and McGrew, W. C. (1991). Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve. Gabon. Phil. T. Roy. Soc. B 334: 179-186.

    Google Scholar 

  • Tutin, C. E. G., Ham, R. M., White, L. J. T., and Harrison, M. J. S. (1997). The primate community of the Lope Reserve, Gabon: diets, responses to fruit scarcity and effects on biomass. Am. J. Primatol. 42: 1-24.

    Google Scholar 

  • Uchida, A. (1998). Variation in tooth morphology of Gorilla gorilla. J. Hum. Evol. 34: 55-70.

    Google Scholar 

  • Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd edn. Cornell University Press, Ithaca, New York.

  • Van Soest, P. J., Robertson, J. B., and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74: 3583-3597.

    Google Scholar 

  • Waterman, P. G. (1986). A phytochemist in the rain forest. Phytochemistry 25: 3-17.

    Google Scholar 

  • Waterman, P. G., and Kool, K. (1994). Colobine food selection and plant chemistry. In Davies, A. G. and Oates, J. F. (eds.), Colobine Monkeys: Their ecology, behavior and evolution, Cambridge University Press, Cambridge, pp. 251-284.

    Google Scholar 

  • Waterman, P. G., and Mole, S. (1994). Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Waterman, P. G., Choo, G. M., Vedder, A. L., and Watts, D. P. (1983). Digestibility, digestion-inhibitors, and nutrients of herbaceous foliage and green stems from an African montane flora and comparison with other tropical flora. Oecologia 60: 244-249.

    Google Scholar 

  • Watts, D. P. (1996). Comparative socio-ecology of gorillas. In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies. Cambridge University Press, Cambridge, pp. 16-28

    Google Scholar 

  • Wrangham, R. W., Conklin, N. L., Chapman, C. A., and Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. In Foraging Strategies and the Natural Diet of Monkeys, Apes, and Humans. Phil. T. Roy. Soc. B 334: 11-18.

    Google Scholar 

  • Wrangham, R. W., Conklin-Brittain, N. L., and Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance 1. antifeedants. Int. J. Primatol. 19(6): 949-970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remis, M.J., Dierenfeld, E.S., Mowry, C.B. et al. Nutritional Aspects of Western Lowland Gorilla (Gorilla gorilla gorilla) Diet During Seasons of Fruit Scarcity at Bai Hokou, Central African Republic. International Journal of Primatology 22, 807–836 (2001). https://doi.org/10.1023/A:1012021617737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012021617737

Navigation