Skip to main content
Log in

In Vitro and In Situ Absorption of SDZ-RAD Using a Human Intestinal Cell Line (Caco-2) and a Single Pass Perfusion Model in Rats: Comparison with Rapamycin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To compare the intestinal absorption and active efflux protein susceptibility of a new immunosuppressive agent (SDZ-RAD) with that of its analog rapamycin.

Methods. Caco-2 cell monolayers were used to examine bidirectional transport of the two compounds at low micromolar concentrations. Single pass rat intestinal perfusion was also used to examine steady state permeability.

Results. Rapamycin and SDZ-RAD showed a distinct preference for transport in the basolateral to apical direction of Caco-2 monolayers as efflux was >20 times greater than apical to basolateral transport. Efflux of SDZ-RAD was completely inhibited by verapamil while efflux of rapamycin was mostly inhibited by verapamil and partially inhibited by probenecid. Passive permeability was shown to be 20 × 10−6 cm/sec for SDZ-RAD and 10 × 10−6 cm/sec for rapamycin. In situ rat studies also showed the permeability of rapamycin to be half that of SDZ-RAD with permeabilities of 12.6 × 10−6 for rapamycin and 24.8 × 10−6 cm/sec for SDZ-RAD.

Conclusions. SDZ-RAD and rapamycin are strong substrates for P-gp-like mediated efflux. Rapamycin is also partially removed from cells by a second efflux system that is not responsive to SDZ-RAD. When these efflux pumps are inhibited SDZ-RAD is likely to be absorbed across the intestine at a faster rate than rapamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Shah, A. Yacobi, W. H. Barr, L. Z. Benet, D. Breimer, M. R. Dobrinska, L. Endrenyi, W. Fairweater, W. Gillespie, M. A. Gonzalez, J. Hooper, A. Jackson, L. J. Lesko, K. K. Midha, P. K. Noonan, R. Patnaik, and R. L. Williams. Evaluation of orally administered highly variable drugs and drug formulations. Pharm. Res. 13:1590–1594 (1996).

    Google Scholar 

  2. R. Morris. Modes of action of FK506, cyclosporin A, and rapamycin. Transplant. Proc. 26:3272–3275 (1994).

    Google Scholar 

  3. G. M. Ferron, E. V. Mishina, J. J. Zimmerman, and W. J. Jusko. Population pharmacokinetics of sirolimus in kidney transplant patients. Clin. Pharmacol. Ther. 61:416–428 (1997).

    Google Scholar 

  4. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695–698 (1989).

    Google Scholar 

  5. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    Google Scholar 

  6. P. F. Augustijns, T. P. Bradshaw, L. L. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Com. 197:360–365 (1993).

    Google Scholar 

  7. T. Hoof, A. Demmer, U. Christians, and B. Tümmler. Reversal of multidrug resistance in chinese hamster ovary cells by the immunosuppressive agent rapamycin. Eur. J. Pharm. Mol. Biol. 246:53–58 (1993).

    Google Scholar 

  8. S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. MacKie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan, and R. G. Deeley. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654 (1992).

    Google Scholar 

  9. T. Nguyen and S. Gupta. Leukotriene C4 secretion from normal murine mast cells by a probenecid-Sensitive and multidrug resistance-associated protein-independent mechanism. J. Immunol. 158:4916–4920 (1997).

    Google Scholar 

  10. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug. Del. Rev. 22:67–84 (1996).

    Google Scholar 

  11. E. Hofsli, and J. Nissen-Myer. Reversal of multidrug resistance by lipophilic drugs. Cancer Res. 50:3997–4002 (1990).

    Google Scholar 

  12. S. Gollapudi, C. H. Kim, B. Tram, S. Sangha, and S. Gupta. Probenecid reverses multidrug resistance in multidrug resistance-associated protein-overexpressing HL60/AR and H69/AR cells but not in P-glycoprotein-overexpressing HL60/Tax and P388/ARD cells. Cancer Chemother. Pharmacol. 40:150–158 (1997).

    Google Scholar 

  13. P. Artursson. Epithelial Transport of Drugs in Cell Culture. I: A model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  14. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Comm. 175:880–885 (1991).

    Google Scholar 

  15. B. H. Stewart, O. H. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, and M. D. Taylor. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: Relationship to absorption in humans. Pharm. Res. 12:693–699 (1995)

    Google Scholar 

  16. V. C. Dias, and R. W. Yatscoff. Investigation of rapamycin transport and uptake across absorptive human intestinal cell monolayers. Clin. Biochem. 27:31–36 (1994).

    Google Scholar 

  17. F. Delie and W. Rubas. A Human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit. Rev. Ther. Drug Carr. Sys. 14:221–286 (1997).

    Google Scholar 

  18. M. M. Nerurkar, N. F. H. Ho, P. S. Burton, T. J. Vidmar, and R. T. Borchardt. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 86:813–821 (1997).

    Google Scholar 

  19. P. Wils, V. Phung-Ba, A. Warnery, D. Lechardeur, S. Raeissi, I. Hidalgo, and D. Scherman. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharm. 48:1528–1530 (1994).

    Google Scholar 

  20. I. Brock, D. R. Hipfner, B. S. Nielsen, P. B. Jensen, R. G. Deeley, S. P. Cole, and M. Schested. Sequential coexpression of the multidrug resistance genes MRP and mdr1 and their products in VP-16 etoposide)-selected H60 small cell lung cancer cells. Cancer Res. 55:459–462 (1995).

    Google Scholar 

  21. E. Dolfini, T. Dasdia, G. Arancia, A. Molinari, A. Calcabrini, R. J. Scheper, M. J. Flens, M. B. Gariboldi, and E. Monti. Characterization of a clonal human colon adenocarcinoma line intrinsically resistant to doxorubicin. Br. J. Cancer 76:67–76 (1997).

    Google Scholar 

  22. R. Evers, G. J. Zaman, L. van Deemter, H. Jansen, J. Calafat, L. C. Oomen, R. P. Elferink, P. Borst, and A. H. Schinkel. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest. 97:1211–1218 (1996).

    Google Scholar 

  23. M. Kavallaris. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anti-Cancer Drugs 8:17–25 (1997).

    Google Scholar 

  24. L. L. Gan, M. A. Moseley, B. Khosla, P. F. Augustijns, T. P. Bradshaw, R. W. Hendren, and D. R. Thakker. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells: Interaction between the two biochemical barriers to intestinal transport. Drug Met. Dis. 24:344–349 (1996).

    Google Scholar 

  25. L. L. Gan and D. R. Thakker. Application of the Caco-2 model in the design and development of orally active drugs: Elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug. Del. Rev. 23:77–98 (1997).

    Google Scholar 

  26. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Del. Rev. 20:99–112 (1996).

    Google Scholar 

  27. C. L. Crespi, B. W. Penman, and M. Hu. Development of Caco-2 cells expressing high levels of cDNA-derived cytochrome P4503A4. Pharm. Res. 13:1635–1641 (1996).

    Google Scholar 

  28. U. Fagerholm, M. Johansson, and H. Lennernäs. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 13:1336–1342 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowe, A., Lemaire, M. In Vitro and In Situ Absorption of SDZ-RAD Using a Human Intestinal Cell Line (Caco-2) and a Single Pass Perfusion Model in Rats: Comparison with Rapamycin. Pharm Res 15, 1666–1672 (1998). https://doi.org/10.1023/A:1011940108365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011940108365

Navigation