Skip to main content
Log in

Wiener Index of Trees: Theory and Applications

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The Wiener index W is the sum of distances between all pairs of vertices of a (connected) graph. The paper outlines the results known for W of trees: methods for computation of W and combinatorial expressions for W for various classes of trees, the isomorphism–discriminating power of W, connections between W and the center and centroid of a tree, as well as between W and the Laplacian eigenvalues, results on the Wiener indices of the line graphs of trees, on trees extremal w.r.t. W, and on integers which cannot be Wiener indices of trees. A few conjectures and open problems are mentioned, as well as the applications of W in chemistry, communication theory and elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barefoot, C. A., Entringer, R. C. and Székely, L. A.: Extremal values for ratios of distances in trees, Discrete Appl. Math. 80 (1997), 37-56.

    Google Scholar 

  2. Bertz, S. H. and Wright, W. F.: The graph theory approach to synthetic analysis: Definition and application of molecular complexity and synthetic complexity, Graph Theory Notes of New York 35 (1998), 32-48.

    Google Scholar 

  3. Bonchev, D., Gutman, I. and Polansky, O. E.: Parity of the distance numbers and Wiener numbers of bipartite graphs, Comm. Math. Chem. (MATCH) 22 (1987), 209-214.

    Google Scholar 

  4. Bonchev, D. and Trinajstić, N.: Information theory, distance matrix and molecular branching, J. Chem. Phys. 67 (1977), 4517-4533.

    Google Scholar 

  5. Buckley, F.: Mean distance in line graphs, Congr. Numer. 32 (1981), 153-162.

    Google Scholar 

  6. Buckley, F. and Harary, F.: Distance in Graphs, Addison-Wesley, Redwood, 1990.

    Google Scholar 

  7. Buckley, F. and Superville, L.: Distance distributions and mean distance problem, In: C. C. Cadogan (ed.), Proc. Third Caribbean Conference on Combinatorics and Computing, University of the West Indies, Barbados, 1981, pp. 67-76.

    Google Scholar 

  8. Burns, K. and Entringer, R. C.: A graph-theoretic view of the United States postal service, In: Y. Alavi and A. J. Schwenk (eds), Graph Theory, Combinatorics, and Algorithms: Proceedings of the Seventh International Conference on the Theory and Applications of Graphs, Wiley, New York, 1995, pp. 323-334.

    Google Scholar 

  9. Canfield, E. R., Robinson, R. W. and Rouvray, D. H.: Determination of the Wiener molecular branching index for the general tree, J. Comput. Chem. 6 (1985), 598-609.

    Google Scholar 

  10. Caporossi, G., Dobrynin, A. A., Gutman, I. and Hansen, P.: Trees with palindromic Hosoya polynomials, Graph Theory Notes of New York 37 (1999), 10-16.

    Google Scholar 

  11. Cayley, A.: On the mathematical theory of isomers, Phil. Magazine 47 (1874), 444-446.

    Google Scholar 

  12. Chan, O., Gutman, I., Lam, T. K. and Merris, R.: Algebraic connections between topological indices, J. Chem. Inf. Comput. Sci. 38 (1998), 62-65.

    Google Scholar 

  13. Chan, O., Lam, T. K. and Merris, R.: Wiener number as an immanant of the Laplacian of molecular graphs, J. Chem. Inf. Comput. Sci. 37 (1997), 762-765.

    Google Scholar 

  14. Chepoi, V. and Klavžar, S.: The Wiener index and the Szeged index of benzenoid systems in linear time, J. Chem. Inf. Comput. Sci. 37 (1997), 752-755.

    Google Scholar 

  15. Dankelmann, P.: Computing the average distance of an interval graph, Inform. Process. Lett. 48 (1993), 311-314.

    Google Scholar 

  16. Dankelmann, P.: Average distance and independence number, Discrete Appl. Math. 51 (1994), 75-83.

    Google Scholar 

  17. Dankelmann, P.: Average distance and domination number, Discrete Appl. Math. 80 (1997), 21-35.

    Google Scholar 

  18. Dankelmann, P.: A note on Mad spanning trees (submitted for publication).

  19. Dankelmann, P. and Entringer, R.: Average distance, minimum degree, and forbidden subgraphs, J. Graph Theory (accepted for publication).

  20. Dobrynin, A. A.: Graph distance of catacondensed hexagonal polycyclic systems under its transformations, Vychisl. Sistemy 127 (1988), 3-39 (in Russian).

    Google Scholar 

  21. Dobrynin, A. A.: Construction of graphs with a palindromic Wiener polynomial, Vychisl. Sistemy 151 (1994), 37-54 (in Russian).

    Google Scholar 

  22. Dobrynin, A. A.: Graphs with palindromic Wiener polynomials, Graph Theory Notes of New York 27 (1994), 50-54.

    Google Scholar 

  23. Dobrynin, A. A.: Distance of iterated line graphs, Graph Theory Notes of New York 37 (1999), 8-9.

    Google Scholar 

  24. Dobrynin, A. A.: Branchings in trees and the calculation of the Wiener index of a tree, Comm. Math. Chem. (MATCH) 41 (2000), 119-134.

    Google Scholar 

  25. Dobrynin, A. A. and Gutman, I.: On a graph invariant related to the sum of all distances in a graph, Publ. Inst. Math. (Beograd) 56 (1994), 18-22.

    Google Scholar 

  26. Dobrynin, A. A. and Gutman, I.: The Wiener index for trees and graphs of hexagonal systems, Diskret. Anal. Issled. Oper. Ser. 2 5(2) (1998), 34-60 (in Russian).

    Google Scholar 

  27. Dobrynin, A. A., Gutman, I. and Jovašević, V.: Bicyclic graphs and their line graphs having the same Wiener index, Diskret. Anal. Issled. Oper. Ser. 2 4(2) (1997), 3-9 (in Russian).

    Google Scholar 

  28. Dobrynin, A. A. and Skorobogatov, V. A.: Metric invariants of subgraphs of molecular graphs, Vychisl. Sistemy 140 (1991), 3-61 (in Russian).

    Google Scholar 

  29. Doyle, J. K. and Graver, J. E.: Mean distance in a graph, Discrete Math. 7 (1977), 147-154.

    Google Scholar 

  30. Entringer, R. C.: Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24 (1997), 65-84.

    Google Scholar 

  31. Entringer, R. C.: Bounds for the average distance-inverse degree product in trees, In: Y. Alavi, D. R. Lick and A. J. Schwenk (eds), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo, 1999, pp. 335-352.

    Google Scholar 

  32. Entringer, R. C., Jackson, D. E. and Snyder, D. A.: Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.

    Google Scholar 

  33. Entringer, R. C., Kleitman, D. J. and Székely, L. A.: A note on spanning trees with minimum average distance, Bull. Inst. Combin. Appl. 17 (1996), 71-78.

    Google Scholar 

  34. Entringer, R. C., Meir, A., Moon, J. W. and Székely, L. A.: On the Wiener index of trees from certain families, Australas. J. Combin. 10 (1994), 211-224.

    Google Scholar 

  35. Estrada, E., Guevara, N. and Gutman, I.: Extension of edge connectivity index. Relationships to the line graph indices and QSPR applications, J. Chem. Inf. Comput. Sci. 38 (1998), 428-431.

    Google Scholar 

  36. Farrell, E. J. and Kennedy, J. W.: Graphs with palindromic matching and characteristic polynomials II. Non-equible palindromic graphs, Preprint, 1992.

  37. Farrell, E. J., Kennedy, J. W., Quintas, L. V. and Wahid, S. A.: Graphs with palindromic matching and characteristic polynomials, Vishwa Internat. J. Graph Theory 1 (1992), 59-76.

    Google Scholar 

  38. Gerstel, O. and Zaks, S.: A new characterization of tree medians with applications to distributed algorithms, In: Graph-Theoretic Concepts in Computer Science (Wiesbaden-Naurod, 1992), Lecture Notes in Comput. Sci. 657, Springer, Berlin, 1993, pp. 135-144.

    Google Scholar 

  39. Graovac, A. and Pisanski, T.: On the Wiener index of a graph, J. Math. Chem. 8 (1991), 53-62.

    Google Scholar 

  40. Gutman, I.: Independent vertex palindromic graphs, Graph Theory Notes of New York 23 (1992), 21-24.

    Google Scholar 

  41. Gutman, I.: A contribution to the study of palindromic graphs, Graph Theory Notes of New York 24 (1993), 51-56.

    Google Scholar 

  42. Gutman, I.: A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem) 285 (1993), 137-142.

    Google Scholar 

  43. Gutman, I.: Calculating theWiener number: The Doyle-Graver method, J. Serb. Chem. Soc. 58 (1993), 745-750.

    Google Scholar 

  44. Gutman, I.: Some properties of the Wiener polynomial, Graph Theory Notes of New York 25 (1993), 13-18.

    Google Scholar 

  45. Gutman, I.: Frequency of even and odd numbers in distance matrices of bipartite graphs, J. Chem. Inf. Comput. Sci. 34 (1994), 912-914.

    Google Scholar 

  46. Gutman, I.: Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994), 1087-1089.

    Google Scholar 

  47. Gutman, I.: On the distance of some compound graphs, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 5 (1994), 29-34.

    Google Scholar 

  48. Gutman, I.: Distance of line graphs, Graph Theory Notes of New York 31 (1996), 49-52.

    Google Scholar 

  49. Gutman, I.: A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997), 128-132.

    Google Scholar 

  50. Gutman, I.: Buckley-type relations for Wiener-type structure-descriptors, J. Serb. Chem. Soc. 63 (1998), 487-492.

    Google Scholar 

  51. Gutman, I.: Distance of thorny graphs, Publ. Inst. Math. (Beograd) 63 (1998), 31-36.

    Google Scholar 

  52. Gutman, I. and Dobrynin, A. A.: The Szeged index-a success story, Graph Theory Notes of New York 34 (1998), 37-44.

    Google Scholar 

  53. Gutman, I. and Estrada, E.: Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996), 541-543.

    Google Scholar 

  54. Gutman, I., Estrada, E. and Ivanciuc, O.: Some properties of the Wiener polynomial of trees, Graph Theory Notes of New York 36 (1999), 7-13.

    Google Scholar 

  55. Gutman, I., Jovašević, V. and Dobrynin, A. A.: Smallest graphs for which the distance of the graph is equal to the distance of its line graph, Graph Theory Notes of New York 33 (1997), 19-19.

    Google Scholar 

  56. Gutman, I., Lee, S. L., Chu, C. H. and Luo, Y. L.: Chemical applications of the Laplacian spectrum of molecular graphs: studies of the Wiener number, Indian J. Chem. 33A (1994), 603-608.

    Google Scholar 

  57. Gutman, I., Linert, W., Lukovits, I. and Dobrynin, A. A.: Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997), 349-354.

    Google Scholar 

  58. Gutman, I., Linert, W., Lukovits, I. and Tomović, Ž.: The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci. 40 (2000), 113-116.

    Google Scholar 

  59. Gutman, I., Luo, Y. L. and Lee, S. L.: The mean isomer degeneracy of the Wiener index, J. Chin. Chem. Soc. 40 (1993), 195-198.

    Google Scholar 

  60. Gutman, I., Marković, S. and Bančević, Ž.: Correlation between Wiener and quasi-Wiener indices in benzenoid hydrocarbons, J. Serb. Chem. Soc. 60 (1995), 633-636.

    Google Scholar 

  61. Gutman, I. and Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996), 982-985.

    Google Scholar 

  62. Gutman, I. and Pavlović, L.: More on distance of line graphs, Graph Theory Notes of New York 33 (1997), 14-18.

    Google Scholar 

  63. Gutman, I. and Polansky, O. E.: Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  64. Gutman, I. and Potgieter, J. H.: Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997), 185-192.

    Google Scholar 

  65. Gutman, I. and Rouvray, D. H.: A new theorem for the Wiener molecular branching index of trees with perfect matchings, Comput. Chem. 14 (1990), 29-32.

    Google Scholar 

  66. Gutman, I. and Šoltés, L.: The range of the Wiener index and mean isomer degeneracy, Z. Naturforsch. 46A (1991), 865-868.

    Google Scholar 

  67. Gutman, I., Vidović, D. and Popović, L.: On graph representation of organic molecules-Cayley's plerograms vs. his kenograms, J. Chem. Soc. Faraday Trans. 94 (1998), 857-860.

    Google Scholar 

  68. Gutman, I. and Yeh, Y. N.: The sum of all distances in bipartite graphs, Math. Slovaca 45 (1995), 327-334.

    Google Scholar 

  69. Gutman, I., Yeh, Y. N., Lee, S. L. and Chen, J. C.: Wiener numbers of dendrimers, Comm. Math. Chem. (MATCH) 30 (1994), 103-115.

    Google Scholar 

  70. Gutman, I., Yeh, Y. N., Lee, S. L. and Luo, Y. L.: Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993), 651-661.

    Google Scholar 

  71. Harary, F. and Schwenk, A. J.: The number of caterpillars, Discrete Math. 6 (1973), 359-365.

    Google Scholar 

  72. Hendry, G. R. T.: On mean distance in certain classes of graphs, Networks 19 (1989), 451-457.

    Google Scholar 

  73. Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 4 (1971), 2332-2339.

    Google Scholar 

  74. Hosoya, H.: On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988), 239-257.

    Google Scholar 

  75. Hu, T. C.: Optimum communication spanning trees, SIAM J. Comput. 3 (1974), 188-195.

    Google Scholar 

  76. John, P. E.: Die Berechnung des Wiener Index für einfache Polybäume, Comm. Math. Chem. (MATCH) 31 (1994), 123-132.

    Google Scholar 

  77. Johnson, D. S., Lenstra, J. K. and Rinnooy-Kan, A. H. G.: The complexity of the network design problem, Networks 8 (1978), 279-285.

    Google Scholar 

  78. Jordan, C.: Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869), 185-190.

    Google Scholar 

  79. Juvan, M., Mohar, B., Graovac, A., Klavžar, S. and Žerovnik, J.: Fast computation of theWiener index of fasciagraphs and rotagraphs, J. Chem. Inf. Comput. Sci. 35 (1995), 834-840.

    Google Scholar 

  80. Juvan, M., Mohar, B. and Žerovnik, J.: Distance-related invariants on polygraphs, Discrete Appl. Math. 80 (1997), 57-71.

    Google Scholar 

  81. Kennedy, J. W.: Palindromic graphs, Graph Theory Notes of New York 22 (1992), 27-32.

    Google Scholar 

  82. Klavžar, S., Gutman, I. and Mohar, B.: Labeling of benzenoid systems which reflects the vertexdistance relations, J. Chem. Inf. Comput. Sci. 35 (1995), 590-593.

    Google Scholar 

  83. Klavžar, S. and Žerovnik, J.: Algebraic approach to fasciagraphs and rotagraphs, Discrete Appl. Math. 68 (1996), 93-100.

    Google Scholar 

  84. Klein, D. J. and Gutman, I.: Wiener-number-related sequences, J. Chem. Inf. Comput. Sci. 39 (1999), 534-536.

    Google Scholar 

  85. Klein, D. J., Mihalić, Z., Plavšić, D. and Trinajstić, N.: Molecular topological index: A relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (1992), 304-305.

    Google Scholar 

  86. Klein, D. J. and Randić, M.: Resistance distance, J. Math. Chem. 12 (1993), 81-95.

    Google Scholar 

  87. Lepović, M. and Gutman, I.: A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci. 38 (1998), 823-826.

    Google Scholar 

  88. Lukovits, I.: General formulas for the Wiener index, J. Chem. Inf. Comput. Sci. 31 (1991), 503-507.

    Google Scholar 

  89. Lukovits, I.: Frequency of even and odd numbers in distance matrices of trees, J. Chem. Inf. Comput. Sci. 33 (1993), 626-629.

    Google Scholar 

  90. McCanna, J. E.: Personal communication.

  91. Mekenyan, O., Bonchev, D. and Balaban, A. T.: Topological indices for molecular fragments, J. Math. Chem. 2 (1988), 347-375.

    Google Scholar 

  92. Mekenyan, O., Dimitrov, S. and Bonchev, D.: Graph-theoretical approach to the calculation of phsysico-chemical properties of polymers, Eur. Polym. J. 19 (1983), 1185-1193.

    Google Scholar 

  93. Merris, R.: An edge version of the matrix-tree theorem and the Wiener index, Linear and Multilinear Algebra 25 (1989), 291-296.

    Google Scholar 

  94. Merris, R.: The distance spectrum of a tree, J. Graph Theory 14 (1990), 365-369.

    Google Scholar 

  95. Merris, R.: Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994), 143-176.

    Google Scholar 

  96. Mohar, B.: The Laplacian spectrum of graphs, In: Y. Alavi, G. Chartrand, O. R. Ollermann and A. J. Schwenk (eds), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1991, pp. 871-898.

    Google Scholar 

  97. Mohar, B.: Eigenvalues, diameter, and mean distance in graphs, Graphs Combin. 7 (1991), 53-64.

    Google Scholar 

  98. Mohar, B., Babić, D. and Trinajstić, N.: A novel definition of the Wiener index for trees, J. Chem. Inf. Comput. Sci. 33 (1993), 153-154.

    Google Scholar 

  99. Mohar, B. and Pisanski, T.: How to compute the Wiener index of a graph, J. Math. Chem. 2 (1988), 267-277.

    Google Scholar 

  100. Moon, J. W.: On the total distance between nodes in trees, Systems Sci. Math. Sci. 9 (1996), 93-96.

    Google Scholar 

  101. Nikolić, S., Trinajstić, N. and Mihalić, Z.: The Wiener index: Developments and applications, Croat. Chem. Acta 68 (1995), 105-129.

    Google Scholar 

  102. Plesnik, J.: On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-21.

    Google Scholar 

  103. Polansky, O. E. and Bonchev, D.: The Wiener number of graphs. I. General theory and changes due to some graph operations, Comm. Math. Chem. (MATCH) 21 (1986), 133-186.

    Google Scholar 

  104. Polansky, O. E. and Bonchev, D.: Theory of the Wiener number of graphs. II. Transfer graphs and some of their metric properties, Comm. Math. Chem. (MATCH) 25 (1990), 3-39.

    Google Scholar 

  105. Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen and chemische Verbindungen, Acta Math. 68 (1937), 145-254, sections 35-37, 55.

    Google Scholar 

  106. Porter, T. D.: A bound involving the centroid and Wiener index of a tree, Utilitas Math. 53 (1998), 141-146.

    Google Scholar 

  107. Razinger, M., Chretien, J. R. and Dubois, J.: Structural selectivity of topological indexes in alkane series, J. Chem. Inf. Comput. Sci. 25 (1985), 23-27.

    Google Scholar 

  108. Rouvray, D. H.: Should we have designs on topological indices?, In: R. B. King (ed.), Chemical Application of Topology and Graph Theory, Elsevier, Amsterdam, 1983, pp. 159-177.

    Google Scholar 

  109. Rouvray, D. H.: Predicting chemistry from topology, Sci. Amer. 255(9) (1986), 40-47.

    Google Scholar 

  110. Rouvray, D. H.: The modelling of chemical phenomena using topological indices, J. Comput. Chem. 8 (1987), 470-480.

    Google Scholar 

  111. Shi, R.: The average distance of trees, Systems Sci. Math. Sci. 6 (1993), 18-24.

    Google Scholar 

  112. Skorobogatov, V. A. and Dobrynin, A. A.: Influence of the structural transformations of a graph on its distance, Vychisl. Sistemy 117 (1986), 103-113 (in Russian).

    Google Scholar 

  113. Skorobogatov, V. A. and Dobrynin, A. A.: Metric analysis of graphs, Comm. Math. Chem. (MATCH) 23 (1988), 105-151.

    Google Scholar 

  114. Šoltés, L.: Transmission in graphs: A bound and vertex removing, Math. Slovaca 41 (1991), 11-16.

    Google Scholar 

  115. Stevanović, D. and Gutman, I.: Hosoya polynomials of trees with up to 10 vertices, Coll. Sci. Papers Fac. Sci. Kragujevac 21 (1999), 111-119.

    Google Scholar 

  116. Wiener, H.: Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

    Google Scholar 

  117. Winkler, P.: Mean distance in a tree, Discrete Appl. Math. 27 (1990), 179-185.

    Google Scholar 

  118. Yeh, Y. N. and Gutman, I.: On the sum of all distances in composite graphs, Discrete Math. 135 (1994), 359-365.

    Google Scholar 

  119. Zelinka, B.: Medians and peripherians of trees, Arch. Math. (Brno) 4 (1968), 87-95.

    Google Scholar 

  120. Zhu, H. Y., Klein, D. J. and Lukovits, I.: Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996), 420-428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrynin, A.A., Entringer, R. & Gutman, I. Wiener Index of Trees: Theory and Applications. Acta Applicandae Mathematicae 66, 211–249 (2001). https://doi.org/10.1023/A:1010767517079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010767517079

Navigation