Skip to main content
Log in

Quantum Projector Method on Curved Manifolds

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A generalized stochastic method for projecting out the ground state of the quantum many-body Schrödinger equation on curved manifolds is introduced. This random-walk method is of wide applicability to any second order differential equation (first order in time), in any spatial dimension. The technique reduces to determining the proper “quantum corrections” for the Euclidean short-time propagator that is used to build up their path-integral Monte Carlo solutions. For particles with Fermi statistics the “Fixed-Phase” constraint (which amounts to fixing the phase of the many-body state) allows one to obtain stable, albeit approximate, solutions with a variational property. We illustrate the method by applying it to the problem of an electron moving on the surface of a sphere in the presence of a Dirac magnetic monopole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. C. Mattis, The Many-Body Problem (World Scientific, Singapore, 1993).

    Google Scholar 

  2. For an introduction see, e.g., J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison Wesley, Redwood City, 1988), Ch. 8.

    Google Scholar 

  3. D. M. Ceperley, in Recent Progress in Many-Body Theories, E. Schachinger, H. Mitter, and M. Sormann, eds. (Plenum, 1995).

  4. L. Parker, Phys. Rev. D 22:1922 (1980).

    Google Scholar 

  5. C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 53:10225 (1996).

    Google Scholar 

  6. G. B. Bachelet, D. M. Ceperley, and M. G. B. Chiocchetti, Phys. Rev. Lett. 62:2088 (1989).

    Google Scholar 

  7. F. Langouche, D. Roekaerts, and E. Tirapegui, Il Nuovo Cimento 53 B:135 (1979).

    Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1999), Ch. 10.

    Google Scholar 

  9. M. Hamermesh, Group Theory (Addison Wesley, Reading, 1962).

    Google Scholar 

  10. G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett. 71:2777 (1993).

    Google Scholar 

  11. For a discussion of quantum corrections see, for example, B. S. DeWitt, Rev. Mod. Phys. 29:377 (1957); and D. W. McLaughlin and L. S. Schulman, J. Math. Phys. 12:2520 (1971).

    Google Scholar 

  12. A. M. Polyakov, Gauge Fields and Strings (Harwood, Chur, 1993), p. 176.

    Google Scholar 

  13. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chem. Phys. 77:5593 (1982).

    Google Scholar 

  14. F. D. M. Haldane, Phys. Rev. Lett. 51:605 (1983).

    Google Scholar 

  15. T. T. Wu and C. N. Yang, Nucl. Phys. B 107:365 (1976).

    Google Scholar 

  16. For real symmetric Hamiltonians, this catastrophe is known as the “fermion-sign” problem. For a recent study, see M. H. Kalos and K. E. Schmidt, J. Stat. Phys. 89:425 (1997).

    Google Scholar 

  17. F. D. M. Haldane, Phys. Rev. Lett. 61:1029 (1988).

    Google Scholar 

  18. V. Melik-Alaverdian, N. E. Bonesteel, and G. Ortiz, Phys. Rev. Lett. 79:5286 (1997).

    Google Scholar 

  19. V. Melik-Alaverdian, N. E. Bonesteel, and G. Ortiz, Phys. Rev. B 60:R8501 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melik-Alaverdian, V., Ortiz, G. & Bonesteel, N.E. Quantum Projector Method on Curved Manifolds. Journal of Statistical Physics 104, 449–470 (2001). https://doi.org/10.1023/A:1010326231389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010326231389

Navigation