Skip to main content
Log in

Carbon and nitrogen in soil and vegetation at sites differing in successional age

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We studied vegetation and soil development during primary succession in an inland drift sand area in the Netherlands. We compared five sites at which primary succession had started at different moments in the past, respectively 0, 10, 43 and 121 years ago, and a site at which succession had not yet started. In the three younger sites the vegetation was herbaceous, whereas in the two older sites a pine forest had formed. Forest formation was accompanied by the development of an FH-layer in the soil, an increase in the amount of soil organic matter, and an increase in nitrogen mineralisation rate from 1.9 to 18 g N m−2 yr−1. Soil moisture content also increased, whereas pH showed a steady decrease with site age. The vegetation changed from a herbaceous vegetation dominated by mosses and lichens and the grass species Corynephorus canescens and Festuca ovina towards a pine forest with an understorey vegetation dominated by Deschampsia flexuosa and, at the oldest site, with dwarf shrubs Empetrum nigrum and Vaccinium myrtillus. At the same time the total amounts of carbon and nitrogen of the ecosystem increased, with a relatively stronger increase of the carbon pool. The establishment of trees during succession greatly affects the dynamics of the ecosystem, especially its carbon dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaback, P. B. 1982. Dynamics of understorey biomass in Sitka Spruce-Western Hemlock forests of southeast Alaska. Ecology 63: 1932–1948.

    Google Scholar 

  • Attiwill, P. M. & Adams, M. A. 1993. Nutrient cycling forests. New Phytol. 124: 561–582.

    Google Scholar 

  • Berendse, F. & Elberse, W. T. 1990. Competition and nutrient availability in heathland and grassland ecosystem. Pp. 9. In: Grace, J. B. & Tilman, D. (eds), Perspectives on Plant Competition, Academic Press, Inc., San Diego.

    Google Scholar 

  • Berendse, F. 1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol. 78: 413–427.

    Google Scholar 

  • Berendse, F., Lammerts, E. J. & Olff, H. 1998. Soil organic matter accumulation and its implications for nitrogen mineralization and plant species composition during succession in coastal dune slacks. Plant Ecol. 137: 71–78.

    Google Scholar 

  • Busse, M. D. 1994. Downed bole-wood decomposition in Lodgepole pine forest of central Oregon. Soil Sci. Soc. Am. J. 58: 221–227.

    Google Scholar 

  • Cannell, M. G. R. 1982. World Forest Biomass and Primary Production Data. Academic Press, London.

    Google Scholar 

  • Castel, I. I. Y., Fanta, J., Koster, E. A., Van Bohemen, H. D., Buizer, D. A. G. and Littel, A. (eds) 1983. De Vallei van de Leuvenumse Beek (Noordwestelijke Veluwe); een fysischgeografische streekbeschrijving. 159: Hoogwoud. KNNV, IBN U9 nr. 29.

  • Daniels, F. J. A., Sloof, J. E. & Van de Wetering, H. T. J. 1987. Veränderungen in der Vegetation der Binnendünen in den Niederlanden. Pp. 24–44. In: Schubert, R. & Hilbig, W. (eds), Erfassung und Bewertung Anthropogener Vegetationsveränderungen. teil 3, Martin Luther Universität Halle, Wittenberg.

  • Elgersma, A. M. 1998. Primary forest succession on poor sandy soils as related to site factors. Biodivers. Conserv. 7: 193–206.

    Google Scholar 

  • Emmer, I. M. 1995. Humus Form and Soil Development During a Primary Succession of Monoculture Pinus sylvestris forests on poor sandy substrates. Thesis, Universiteit Amsterdam, Amsterdam.

    Google Scholar 

  • Fanta, J. 1982. Natuurlijke Verjonging van het Bos op Droge Zandgronden. 'De Dorschkamp', Wageningen.

  • Fanta, J. 1986. Primary forest succession on blown-out areas in the Dutch drift sands. Pp. 164–169. In: Fanta, J. (ed.), Forest Dynamics Research in Central and Western Europe, PuDoc-DLO, Wageningen.

  • Finegan, B. 1996. Pattern and process in neotropical secondary forest: the first 100 years of succession. Trends Ecol. Evol. 11: 119–124.

    Google Scholar 

  • Frelich, L. E. & Reich, P. B. 1995. Spatial patterns and succession in a Minnesota southern-boreal forest. Ecol. Monog. 65: 325–346.

    Google Scholar 

  • Gleeson, S. K. & Tilman, D. 1990. Allocation and the transient dynamics of succession on poor soils. Ecology 7: 1144–1155.

    Google Scholar 

  • Heij, G. J. & Schneider, T. (eds) 1991. Acidification research in the Netherlands. Elsevier, Amsterdam.

    Google Scholar 

  • Hester, A. J., Gimingham, C. H. & Miles, J. 1991a. Succession from heather moorland to birch woodland I. Experimental alteration of specific environmental conditions in the field. J. Ecol. 79: 303–315.

    Google Scholar 

  • Hester, A. J., Miles, J. & Gimingham, C. H. 1991b. Succession from heather moorland to birch woordland. II. growth and competition between Vaccinium myrtillus, Deschampsia flexuosa, Agrostis capillaris. J. Ecol. 79: 317–328.

    Google Scholar 

  • Hobbie, S. E. 1992. Effects of plant species on nutrient cycling. Trends Ecol. Evolut. 7: 336–339.

    Google Scholar 

  • Huggett, R. J. 1998. Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32: 156–172.

    Google Scholar 

  • Ivens, W. 1990. Atmospheric Deposition onto Forests. PhD Thesis. Rijksuniversiteit Utrecht, Utrecht.

    Google Scholar 

  • Keenan, R. J., Prescott, C. E. & Kimmins, J. P. 1995. Litter production and nutrient resorption in western red cedar and western hemlock forests on northern Vancouver Islands, British Columbia. Canad. J. Forest Res. 25: 1850–1857.

    Google Scholar 

  • Klinka, K., Green, R. N., Trowbridge, R. L. & Lowe, L. E. 1981. Taxonomic classification of humus forms in ecosystems of British Columbia; first approximation, Ministry of Forest, Smithers.

  • Koster, E. A. 1978. De stuifzanden van de Veluwe: een fysischgeografische studie. PhD Thesis, Universiteit van Amsterdam, Amsterdam.

    Google Scholar 

  • Marklund, L. G. 1988. Biomass funktioner för Tall, Gran och Björk i Sverige. Sveriges Lantbruksuniversitet, Umeå .

  • Olff, H., Berendse, F. & De Vissser, W. 1994. Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application to mown grassland. J. Ecol. 82: 611–620.

    Google Scholar 

  • Olff, H., Huisman, J. & Van Tooren, B. F. 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J. Ecol. 81: 693–706.

    Google Scholar 

  • Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256–286.

    Google Scholar 

  • Prach, K. 1989. Primary Forest Succession in Sand Dune Areas. 'De Dorschkamp', Wageningen.

  • Robertson, G. P. & Tiedje, J. M. 1984. Denitrification and nitrous oxide production in successional and old-growth Michican forests. Soil Sci. Soc. America J. 48: 383–389.

    Google Scholar 

  • Rode, M.W. 1993. Leaf-nutrient accumulation and turnover at three stages of succession from heathland to forest. J. Vegetat. Sci. 4: 263–268.

    Google Scholar 

  • Schulze, E. D., Schulze, W., Kelliher, F. M., Vygodskaya, N. N., Ziegler, W., Kobak, K. I., Koch, H., Arneth, A., Kusnetsova, W. A., Sogatchev, A., Issajev, A., Bauer, G. & Hollinger, D. Y. 1995. Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Canad. J. Forest Res. 25: 943–960.

    Google Scholar 

  • Van der Meijden, R., Weeda, E. J., Holverda, W. J. & Hovenkamp, P. H. 1990. Heukel's flora van Nederland, 21st ed. Wolters-Noordhoff, Groningen.

    Google Scholar 

  • Van Oene, H., Berendse, F. & De Kovel, C. G. F. 1999. An analysis of the relative effects of historic CO2 levels and nitrogen inputs on vegetation succession in inland dunes using the NUCOM model. Ecolog. Applic. 9: 920–935.

    Google Scholar 

  • Vitousek, P.M. & Walker, L. R. 1987. Colonization, succession and resource availability: ecosystem level interactions. Pp. 207–223. In: Gray, A. J., Crawley, M. J. & Edwards, P. J. (eds) Colonization, Succession and Stability, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Vitousek, P. M., Matson, P. A. & Van Cleve, K. 1989. Nitrogen availability and nitrification during succession: Primary, secondary and old-field seres. Pl. soil 115: 229–239.

    Google Scholar 

  • Zarin, D. J. & Johnson, A. H. 1995. Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci. Soc. Am. J. 59: 1444–1452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Kovel, C.F., Van Mierlo, A., Wilms, Y. et al. Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecology 149, 43–50 (2000). https://doi.org/10.1023/A:1009898622773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009898622773

Navigation