Skip to main content
Log in

Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

This study quantified relationships of understory vascular plant species composition and richness along environmental gradients over a broad spatial scale in second-growth oak forests in eastern North America. Species frequencies were recorded in 108 25 × 25 m plots in four study sites extending over 70 km in southern Ohio, U.S.A.. The plots were stratified into three long-term soil moisture classes with a GIS-derived integrated moisture index (IMI). In addition to the IMI, the environmental data matrix included eight soil and three overstory variables. Canonical correspondence analysis (CCA) indicated that variations in understory species composition were most strongly related to topographic variations in predicted moisture (IMI), N mineralization rate, nitrification rate, and soil pH. In addition, floristic variation at the regional scale was correlated with variations in soil texture, nitrification, pH, and PO4 , resulting from differences in the soil parent material complexes among sites. Species richness averaged 65 species/plot, and increased with moisture and fertility. Stepwise regression indicated that richness was positively correlated with N mineralization rate and nitrification rate, and inversely correlated with tree basal area. Greater richness on fertile plots was the largely the result of increasing forb richness. Forb richness per quadrat (2 m2) was most strongly and positively related to N mineralization rate. Conversely, richness of understory individuals of tree species was greatest on xeric, less-fertile plots. Our results describe general, broad-scale species-environment relationships that occurred at both the topographic scale (long-term moisture status and fertility) and the regional scale (geomorphological differences among the sites). Strong species richness-N mineralization correlations indicate an important link between below-ground processes and above-ground biodiversity. Because N availability was a strong correlate to vegetation patterns at a broad-scale, our results suggest that the increasing rates of atmospheric N deposition in the region could have a major impact on understory vegetation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P. & Melillo, J. M. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386.

    Google Scholar 

  • Abrams, M. D. 1990. Adaptations and responses to drought in Quercus species of North America. Tree Physiol. 7: 227-238.

    Google Scholar 

  • Abrams, M. D. 1992. Fire and the development of oak forests. Bioscience 42: 346-353.

    Google Scholar 

  • Allen, R. B. & Peet, R. K. 1990. Gradient analysis of forests of the Sangre de Cristo Range, Colorado. Can. J. Bot. 68: 193-201.

    Google Scholar 

  • Annala, A. E. & Kapustka, L. 1983. Several relic prairies of the Edge of Appalachia Preserve System, Adams County, Ohio. Ohio J. Sci. 83: 109-114.

    Google Scholar 

  • Beatty, S. W. 1984. Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65: 1406-1419.

    Google Scholar 

  • Boerner, R. E. J. 1982. Fire and nutrient cycling in temperate ecosystems. Bioscience 32: 187-192.

    Google Scholar 

  • Boerner, R. E. J. 1984a. Nutrient fluxes in litterfall and decomposition in four forests along a gradient of soil nutrient availability within a southern Ohio watershed. Can. J. For. Res. 14: 794-802.

    Google Scholar 

  • Boerner, R. E. J. 1984b. Seasonal nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. J. Appl. Ecol. 21: 1029-1040.

    Google Scholar 

  • Boerner, R. E. J. & Koslowsky, S. D. 1989. Microscale variations in nitrogen mineralization and nitrification in a beech-maple forest. Soil Biol. Biochem. 21: 795-801

    Google Scholar 

  • Bråkenhielm S. & Qinghong, L. 1995. Impact of sulphur and nitrogen deposition on plant species assemblages in natural vegetation. Water, Air, and Soil Pollut. 85: 1581-1586.

    Google Scholar 

  • Braun, E. L. 1928. Glacial and post-glacial plant migrations indicated by relic colonies of southern Ohio. Ecology 9: 284-302.

    Google Scholar 

  • Bray, J. R. & Curtis, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325-349.

    Google Scholar 

  • Brunet, J., Falkengren-Grerup, U., Ruhling, A. & Tyler, G. 1997. Regional differences in floristic change in South Swedish oak forests as related to soil chemistry and land use. J. Veg. Sci. 8: 329-336.

    Google Scholar 

  • Canham, C. D. 1988. An index for understory light levels in and around canopy gaps. Ecology 69: 1634-1638.

    Google Scholar 

  • Chazdon, R. L. 1988. Sunflecks and their importance to forest understorey plants. Adv. Ecol. Res. 18: 1-63

    Google Scholar 

  • Decker, K. L. M., Boerner, R. E. J. & Morris, S. J. 1999. Scale-dependent patterns of soil enzyme activity in a forested landscape. Can. J. For. Res.: in press.

  • DeMars, B. G. & Boerner, R. E. J. 1995. Mycorrhizal dynamics of three woodland herbs of contrasting phenology along topographic gradients. Am. J. Bot. 82: 1426-1431.

    Google Scholar 

  • Diekmann, M. & Falkengren-Grerup, U. 1998. A new species index for forest vascular plants: development of functional indices based on mineralization rates of various forms of soil nitrogen. J. Ecol. 86: 269-283.

    Google Scholar 

  • Environmental Systems Research Institute. 1994. ArcDoc. (On-line documentation for Arc/Info software). Environmental Systems Research Institute, Redlands, CA.

    Google Scholar 

  • Falkengren-Grerup, U. 1986. Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia 70: 339-347.

    Google Scholar 

  • Finney, H. R., Holowaychuck, N. & Hiddleson, M. R. 1962. The influence of microclimate on the morphology of certain soils of the Allegheny Plateau of Ohio. Soil Sci. Soc. Amer. Proc. 26: 287-292.

    Google Scholar 

  • Fralish, J. S. 1994. The effect of site environment on forest productivity in the Illinois Shawnee Hills. Ecol. Appl. 4: 134-143.

    Google Scholar 

  • Garten, C. T. Jr. 1993. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed. Ecology 74: 2098-2113.

    Google Scholar 

  • Garten, C. T., Huston, M. A. & Thoms, C. A. 1994. Topographic variation of soil nitrogen dynamics atWalker Branch Watershed, Tennessee. For. Sci. 40: 497-512.

    Google Scholar 

  • Gilliam, F. S. & Turrill, N. L. 1993. Herbaceous layer cover and biomass in a young versus a mature stand of a central Appalachian hardwood forest. Bull. Torrey Bot. Club 120: 445-450.

    Google Scholar 

  • Gleason, H. A. & Cronquist, A. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. The New York Botanical Garden, New York.

    Google Scholar 

  • Glenn-Lewin, D. C. 1975. Plant species diversity in ravines of the southern Finger Lakes Region, New York. Can. J. Bot. 53: 1465-1472.

    Google Scholar 

  • Goldblum, D. 1997. The effects of treefall gaps on understory vegetation in New York State. J. Veg. Sci. 8: 125-132.

    Google Scholar 

  • Griffith, C. Jr. 1996. Distribution of Viola blanda in relation to within-habitat variation in canopy openness, soil phosphorus, and magnesium. Bull. Torrey Bot. Club 123: 281-285.

    Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley and Sons, Chichester.

    Google Scholar 

  • Hix, D. M. & Pearcy, J. N. 1997. Forest ecosystems of the Marietta Unit, Wayne National Forest, southeastern Ohio: multifactor classification and analysis. Can. J. For. Res. 27: 1117-1131.

    Google Scholar 

  • Howell, J. A. & Vankat, J. L. 1981. An ordination of the forest herb stratum of Abner's Hollow, south-central Ohio. Ohio J. Sci. 81: 98-104.

    Google Scholar 

  • Huebner, C. D. & Randolph, J. C. 1995. Environmental factors affecting understory diversity in second-growth deciduous forests. Am. Midl. Nat. 134: 155-165.

    Google Scholar 

  • Hutchins, R. B., Blevins, R. L., Hill, J. D. & White, E. H. 1976. The influence of soils and microclimate on vegetation of forested slopes in eastern Kentucky. Soil Sci. 121: 234-241.

    Google Scholar 

  • Iverson, L. R., Dale, M. E., Scott, C. T. & Prasad, A. 1997. A GISderived integrated moisture index to predict forest composition and productivity in Ohio forests. Landscape Ecol. 12: 331-348.

    Google Scholar 

  • Killham, K. 1994. Soil Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kost, J. A. & Boerner, R. E. J. 1985. Foliar nutrient dynamics and nutrient use efficiency in Cornus florida along a gradient of soil moisture and nutrient availability. Oecologia 66: 602-606.

    Google Scholar 

  • Kozlowski, T. T., Kramer, P. J. & Pallardy, S. G. 1991. The physiological ecology of woody plants. Academic Press, Inc., San Diego.

    Google Scholar 

  • Lieffers, V. J. & Larkin-Lieffers, P. A. 1987. Slope, aspect, and slope position as factors controlling grassland communities in the coulees of the Oldman River, Alberta. Can. J. Bot. 65: 1371-1378.

    Google Scholar 

  • Lipscomb, M. B. & Nilsen, E. T. 1990. Environmental and physiological factors influencing the natural distribution of evergreen and deciduous Ericaceous shrubs on northeast-and southwestfacing slopes of the Southern Appalachian Mountains. II. Water relations. Am. J. Bot. 77: 517-526.

    Google Scholar 

  • Liu, Y. & Muller, R. N. 1993. Above-ground net primary productivity and nitrogen mineralization in a mixed mesophytic forest of eastern Kentucky. Forest Ecol. Manage. 59: 53-62.

    Google Scholar 

  • Lloyd, A. H., Armbruster, W. S. & Edwards, M. E. 1994. Ecology of a steppe-tundra gradient in interior Alaska. J. Veg. Sci. 5: 897-912.

    Google Scholar 

  • Lorimer, C. G. 1984. Development of the red maple understory in northeastern oak forests. Forest Sci. 30: 3-22.

    Google Scholar 

  • Matlack, G. R. 1994. Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75: 1491-1502.

    Google Scholar 

  • Matlack, G. R., Gibson, D. J. & Good, R. E. 1993.Clonal propogation, local disturbance, and the structure of vegetation: ericaceous shrubs in the Pine Barrens of New Jersey. Biol. Cons. 63: 1-8.

    Google Scholar 

  • McCune, B. L. & Mefford, M. J. 1997. PC-ORD for Windows. Multivariate analysis of ecological data. Version 3.05. MjM Software, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • McNab, W. H. 1993. A topographic index to quantify the effect of mesoscale landform on site productivity. Can. J. For. Res. 23: 1100-1107.

    Google Scholar 

  • Morris, S. J. & Boerner, R. E. J. 1998. Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests. Landscape Ecol.13: 215-224.

    Google Scholar 

  • Mudrick, D. A., Hoosein, M., Hicks, R. R. & Townsend, E. C. 1994. Decomposition of leaf litter in an Appalachian forest: effects of leaf species, aspect, slope position and time. Forest Ecol. Manage. 68: 231-250.

    Google Scholar 

  • NADP/NTN, 1998. National Atmospheric Depostition Program/-NTN. Data available from the www: <http: //nadp.sws.uiuc.edu/>.

  • Norland, E. R. & Hix, D. M. 1996. Composition and structure of a chronosequence of young, mixed-species forests in southeastern Ohio, USA. Vegetatio 125: 11-30.

    Google Scholar 

  • Palmer, M. W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215-2230.

    Google Scholar 

  • Palmer, M. W. & Dixon, P. M. 1990. Small-scale environmental heterogeneity and the analysis of species distributions along gradients. J. Veg. Sci. 1: 57-65.

    Google Scholar 

  • Pastor, J., Aber, J. D. & McClaugherty, C. A. 1982. Geology, soils and vegetation of Blackhawk Island, Wisconsin. Am. Midl. Nat. 108: 266-277.

    Google Scholar 

  • Pastor, J., Aber, J. D. & McClaugherty, C. A. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island,Wisconsin. Ecology 65: 256-268.

    Google Scholar 

  • Pausas, J. G. & Carreras, J. 1995. The effect of bedrock type, temperature and moisture on species richness of Pyrenean Scots pine (Pinus sylvestris L.) forests. Vegetatio 116: 85-92.

    Google Scholar 

  • Plymale, A. E., Boerner, R. E. J. & Logan, T. J. 1987. Relative nitrogen mineralization and nitrification in soils of two contrasting hardwood forests: effects of site microclimate and initial soil chemistry. Forest Ecol. Manage. 21: 21-36.

    Google Scholar 

  • Pregitzer, K. S., Barnes, B. V. & Lemme, G. D. 1983. Relationships of topography to soils and vegetation in an Upper Michigan ecosystem. Soil Sci. Soc. Am. J. 47: 117-123.

    Google Scholar 

  • Stephenson, N. L. 1999. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. In Press.

  • Stone, W. E. & Wolfe, M. L. 1996. Response of understory vegetation to variable tree mortality following a mountain pine beetle epidemic in lodgepole pine stands in northern Utah. Vegetatio 122: 1-12.

    Google Scholar 

  • Stout, W. 1933. The charcoal iron industry of the hanging rock iron district: its influence on the development of the Ohio Valley. Ohio Arch. Hist. Q. 42: 72-104.

    Google Scholar 

  • Sutherland, E. K. 1997. The history of fire in a southern Ohio second-growth mixed-oak forest, Pp. 172-183. In: Pallardy, S. G., Cecich, R. A., Garret, H. E., and Johnson, P. S. (eds), Proceedings of the 11th Central Hardwoods Conference, Columbia, Missouri. U.S.D.A. Forest Service GTR-NC.

  • Theodose, T. A. & Bowman, W. D. 1997. Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78: 1861-1872.

    Google Scholar 

  • Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57: 189-214.

    Google Scholar 

  • Wentworth, T. R. 1981. Vegetation on limestone and granite in the Mule Mountains, Arizona. Ecology 62: 469-482.

    Google Scholar 

  • Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1-80.

    Google Scholar 

  • Wolfe, J. N., Wareham, R. T. & Scofield, H. T. 1949. Microclimates and macroclimate of Neotoma: a small valley in central Ohio. Bull. Ohio Biol. Surv. 41: 1-169.

    Google Scholar 

  • Xu, M., Chen, J. & Brookshire, B. L. 1997. Temperature and its variability in oak forests in the southeastern Missouri Ozarks. Clim. Res. 8: 209-223.

    Google Scholar 

  • Zak, D. R. & Pregitzer, K. S. & Host, G. E. 1986. Landscape variation in nitrogen mineralization and nitrification. Can. J. For. Res. 16: 1258-1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, T.F., Boerner, R.E., Iverson, L.R. et al. Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecology 144, 177–189 (1999). https://doi.org/10.1023/A:1009804020976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009804020976

Navigation