Skip to main content
Log in

Qualitative Spatial Representation and Reasoning with the Region Connection Calculus

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

This paper surveys the work of the qualitative spatial reasoning group at the University of Leeds. The group has developed a number of logical calculi for representing and reasoning with qualitative spatial relations over regions. We motivate the use of regions as the primary spatial entity and show how a rich language can be built up from surprisingly few primitives. This language can distinguish between convex and a variety of concave shapes and there is also an extension which handles regions with uncertain boundaries. We also present a variety of reasoning techniques, both for static and dynamic situations. A number of possible application areas are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J. F. “An interval-based representation of temporal knowledge,” Proceedings 7th IJCAI, pp. 221–226, 1981.

  2. Allen, J. F. “Maintaining knowledge about temporal intervals,” Communications of the ACM, Vol. 26(11): 832–843, 1983.

    Google Scholar 

  3. Allen, J. F. “Towards a general theory of action and time,” Artificial Intelligence, Vol. 23(2): 123–154, 1984.

    Google Scholar 

  4. Asher, N. and Vieu, L. “Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology,” Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal,, 1995.

  5. Bennett, B. “Some observations and puzzles about composing spatial and temporal relations,” in R. Rodríguez (ed.), Proceedings ECAI-94 Workshop on Spatial and Temporal Reasoning, 1994a.

  6. Bennett, B. Spatial reasoning with propositional logics, in J. Doyle, E. Sandewall and P. Torasso (eds), Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), Morgan Kaufmann: San Francisco, CA, 1994b.

    Google Scholar 

  7. Bennett, B. “Modal logics for qualitative spatial reasoning,” Bulletin of the Interest Group on Propositional and Predicate Logics (IGPL), 1995.

  8. Bennett, B. The application of qualitative spatial reasoning to GIS, in R. Abrahart (ed.), Proc First Int. Conf. on GeoComputation, Vol. I, Leeds, pp. 44–47, 1996a.

  9. Bennett, B. Carving up space: steps towards construction of an absolutely complete theory of spatial regions, in L. P. J.J. Alfres and E. Orlowska (eds), Proceedings of JELIA '96, pp. 337–353, 1996b.

  10. Bennett, B., Isli, A. and Cohn, A. G. “When does a composition table provide a complete and tractable proof procedure for a relational constraint language?” Proceedings of the IJCAI-97 workshop on Spatial and Temporal Reasoning, Nagoya, Japan, 1997.

  11. Biacino, L. and Gerla, G. “Connection structures,” Notre Dame Journal of Formal Logic, 1991.

  12. Casati, R. and Varzi, A. Holes and Other Superficialities, MIT Press: Cambridge, MA, 1994.

    Google Scholar 

  13. Clarke, B. L. “A calculus of individuals based on ‘connection’,” Notre Dame Journal of Formal Logic, Vol. 23(3): 204–218, 1981.

    Google Scholar 

  14. Clarke, B. L. “Individuals and points,” Notre Dame Journal of Formal Logic, Vol. 26(1): 61–75, 1985.

    Google Scholar 

  15. Clementini, E. and Di Felice, P. An algebraic model for spatial objects with undetermined boundaries, in P. Burrough and A. M. Frank (eds), Proceedings, GISDATA Specialist Meeting on Geographical Entities with Undetermined Boundaries,, Taylor Francis, 1994.

  16. Clementini, E. and Di Felice, P. “Approximate topological relations,” International Journal of Approximate Reasoning, 1997.

  17. Clementini, E., Di Felice, P. and Oosterom, P. A small set of formal topological relationships suitable for end user interatction, in D. Abel and B. C. Ooi (eds), Proc. 3rd Int. Symp. on Large Spatial Databases, SSD, number 692 in LNCS, Springer, pp. 277–295, 1994.

  18. Clementini, E., Sharma, J. and Egenhofer, M. J. “Modeling topological spatial relations: strategies for query processing,” Computers and Graphics, Vol. 18(6): 815–822, 1994.

    Google Scholar 

  19. Cohn, A. G. “A more expressive formulation of many sorted logic,” Journal of Automated Reasoning, Vol. 3: 113–200, 1987.

    Google Scholar 

  20. Cohn, A. G. Modal and non-modal qualitative spatial logics, in F. D. Anger, H. W. Guesgen and J. van Benthem (eds), Proceedings of the Workshop on Spatial and Temporal Reasoning, IJCAI-93, IJCAI, 1993.

  21. Cohn, A. G. A hierarchcial representation of qualitative shape based on connection and convexity, in A. Frank (ed.), Proc COSIT95, LNCS, Springer Verlag, pp. 311–326, 1995.

  22. Cohn, A. G. Calculi for qualitative spatial reasoning, in J. P. J Calmet, J A Campbell (ed.), Artificial Intelligence and Symbolic Mathematical Computation, Vol. 1138 of LNCS, Springer Verlag, pp. 124–143, 1996.

  23. Cohn, A. G. and Gotts, N. M. “Spatial regions with undetermined boundaries,” Proceedings of Gaithesburg Workshop on GIS, ACM, 1994a.

  24. Cohn, A. G. and Gotts, N. M. A theory of spatial regions with indeterminate boundaries, in C. Eschenbach, C. Habel and B. Smith (eds), Topological Foundations of Cognitive Science, 1994b.

  25. Cohn, A. G. and Gotts, N. M. The ‘egg-yolk’ representation of regions with indeterminate boundaries, in P. Burrough and A. M. Frank (eds), Proceedings, GISDATA Specialist Meeting on Geographical Objects with Undetermined Boundaries, Francis Taylor, pp. 171–187, 1996a.

  26. Cohn, A. G. and Gotts, N. M. A mereological approach to representing spatial vagueness, in J. D. L C Aiello and S. Shapiro (eds), Principles of Knowledge Representation and Reasoning, Pro 5th Conference, Morgan Kaufmann, pp. 230–241, 1996b.

  27. Cohn, A. G., Bennett, B., Gooday, J. and Gotts, N. “Representing and reasoning with qualitative spatial relations about regions,” in O. Stock (ed.), Temporal and spatial reasoning, Kluwer, 1997.

  28. Cohn, A. G., Gooday, J. M. and Bennett, B. A comparison of structures in spatial and temporal logics, in R. Casati, B. Smith and G. White (eds), Philosophy and the Cognitive Sciences: Proceedings of the 16th International Wittgenstein Symposium, Hölder-Pichler-Tempsky, Vienna, 1994.

    Google Scholar 

  29. Cohn, A. G., Gotts, N. M., Randell, D. A., Cui, Z., Bennett, B. and Gooday, J. M. “Exploiting temporal continuity in temporal calculi,” in R. G. Golledge and M. J. Egenhofer (eds), Spatial and Temporal Reasoning in Geographical Information Systems, Elsevier, 1997. To appear.

  30. Cohn, A. G., Randell, D. A. and Cui, Z. “Taxonomies of logically defined qualitative spatial relations,” Int. J of Human-Computer Studies, Vol. 43: 831–846, 1995.

    Google Scholar 

  31. Cohn, A. G., Randell, D. A., Cui, Z. and Bennett, B. “Qualitative spatial reasoning and representation,” in N. P. Carreté and M. G. Singh (eds), Qualitative Reasoning and Decision Technologies, CIMNE, Barcelona, pp. 513–522, 1993.

  32. Cui, Z., Cohn, A. G. and Randell, D. A. Qualitative simulation based on a logical formalism of space and time, Proceedings AAAI-92, AAAI Press, Menlo Park, California, pp. 679–684, 1992.

    Google Scholar 

  33. Cui, Z., Cohn, A. G. and Randell, D. A. “Qualitative and topological relationships in spatial databases,” in D. Abel and B. C. Ooi (eds), Advances in Spatial Databases, Vol. 692 of Lecture Notes in Computer Science, Springer Verlag, Berlin, pp. 293–315, 1993.

    Google Scholar 

  34. Davis, E., Gotts, N. M. and Cohn, A. G. “Constraint networks of topological relations and convexity,” Technical report, Courant Institute, New York University, 1997.

  35. de Laguna, T. “Point, line and surface as sets of solids,” The Journal of Philosophy, Vol. 19: 449–461, 1922.

    Google Scholar 

  36. Dornheim, C. “Vergleichende analyse topologischer ansaetze des qualitativen raeumlichen siessens,” Studienarbeit, fachereich informatik,Universitaet Hamburg, 1995.

  37. Egenhofer, M. Reasoning about binary topological relations, in O. Gunther and H. J. Schek (eds), Proceedings of the Second Symposium on Large Spatial Databases, SSD '91 (Zurich, Switzerland). Lecture Notes in Computer Science 525, pp. 143–160, 1991.

  38. Egenhofer, M. Topological similarity, Proc FISI workshop on the Topological Foundations of Cognitive Science, Vol. 37 of Reports of the Doctoral Series in Cognitive Science, University of Hamburg, 1994.

  39. Egenhofer, M. and Franzosa, R. “Point-set topological spatial relations,” International Journal of Geographical Information Systems Voo. 5(2): 161–174, 1991.

    Google Scholar 

  40. Egenhofer, M. J. and Al-Taha, K. K. Reasoning about gradual changes of topological relationships, in A. U. Frank, I. Campari and U. Formentini (eds), Theories and Methods of Spatio-temporal Reasoning in Geographic Space, Vol. 639 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 196–219, 1992.

    Google Scholar 

  41. Egenhofer, M. J. and Franzosa, R. D. “On the equivalence of topological relations,” International Journal of Geographical Information Systems, Vol. 9(2): 133–152, 1995.

    Google Scholar 

  42. Egenhofer, M. J., Clementini, E. and Di Felice, P. “Toplogical relations between regions with holes,” Int. Journal of Geographical Information Systems, Vol. 8(2), 129–144, 1994.

    Google Scholar 

  43. Elkan, C. The paradoxical success of fuzzy logic, IEEE Expert, Vol. 9(4): 3–8, 1994. Followed by responses and a reply.

    Google Scholar 

  44. Faltings, B. and Struss, P. (eds). Recent Advances in Qualitative Physics, MIT Press: Cambridge, Ma, 1992.

    Google Scholar 

  45. Fernyhough, J., Cohn, A. G. and Hogg, D. C. “Real time generation of semantic regions from video sequences,” Proc. ECCV96, LNCS, Springer Verlag, 1996.

  46. Fernyhough, J., Cohn, A. G. and Hogg, D. C. Event recognition using qualitative reasoning on automatically generated spatio-temporal models from visual input, 1997.

  47. Fernyhough, J. H. Generation of qualitative spatio-temporal representations from visual input, PhD Thesis, 1997.

  48. Forbus, K., Nielsen, P. and Faltings, B. “Qualitative kinematics: A framework,” Proceedings IJCAI-87, pp. 430–436, 1987.

  49. Frank, A. and Kuhn, W. (eds). Spatial Information Theory: a theoretical basis for GIS, Vol. 988 of Lecture Notes in Computer Science, Springer Verlag, Berlin, 1995.

    Google Scholar 

  50. Frank, A. U. and Campari, I. (eds). Spatial Information Theory: A Theoretical Basis for GIS: Proceedigns of COSIT'93, Vol. 716 of Lecture Notes in Computer Science, Springer-Verlag, 1993.

  51. Freksa, C. “Temporal reasoning based on semi-intervals,” Artificial Intelligence, Vol. 54: 199–227, 1992.

    Google Scholar 

  52. Galton, A. “Towards a qualitative theory of movement,” in A. Frank and W. Kuhn (eds), Spatial Information Theory — Proceedings of the international conference COSIT'95, number 998 in LNCS, Sorubger, Austria, pp. 377–396, 1995a.

    Google Scholar 

  53. Galton, A. Taking dimension seriously in qualitative spatial reasoning, in W. Wahlster (ed.), Proceedings of the 12th European Conference on Artificial Intelligence, John Wiley and Sons, pp. 501–505, 1996.

  54. Galton, A. P. “A critical examination of Allen's theory of action and time,” Artificial Intelligence, Vol. 42(2): 159–188, 1990.

    Google Scholar 

  55. Galton, A. P. A qualitative approach to continuity, Proc. Time, Space and Movement, Ch. Bonas, France, 1995b.

    Google Scholar 

  56. Gooday, J. and Cohn, A. G. “Transition-based qualitative simulation,” Proceeding of the 10th International Workshop on Qualitative Reasoning, AAAI Press, pp. 74–82, 1996a.

  57. Gooday, J. and Cohn, A. G. Visual language syntax and semantics: A spatial logic approach, in K. Marriott and B. Meyer (eds), Proc Workshop on Theory of Visual Languages, Gubbio, Italy, 1996b.

    Google Scholar 

  58. Gooday, J. M. and Cohn, A. G. “Using spatial logic to describe visual languages,” Artificial Intelligence Review, 1995. This paper will also appear in Integration of Natural Language and Vision Processing (Vol. IV), ed P MckEvitt, Kluwer, 1996.

  59. Gooday, J. M. and Galton, A. P. “The transition calculus: A high-level formalism for reasoning about action and change,” Journal of Theoretical and Experimental Artificial Intelligence, 1996.

  60. Gotts, N. M. Defining a ‘doughnut’ made difficult, in C. Eschenbach, C. Habel and B. Smith (eds), Topological Foundations of Cognitive Science, Vol. 37 of Reports of the Doctoral programme in Cognitive Science, University of Hamburg, 1994a.

  61. Gotts, N. M. How far can we ‘C’? defining a ‘doughnut’ using connection alone, in J. Doyle, E. Sande-wall and P. Torasso (eds), Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), Morgan Kaufmann, 1994b.

  62. Gotts, N. M. An axiomatic approach to topology for spatial information systems, Technical report, Report 96.25, School of Computer Studies, University of Leeds, 1996a.

  63. Gotts, N. M. “Formalising commonsense topology: The INCH calculus,” Proc. Fourth International Symposium on Artificial Intelligence and Mathematics, 1996b.

  64. Gotts, N. M. Toplogy from a single primitive relation: defining topological properties and relations in terms of connection, Technical report Report 96.23, School of Computer Studies, University of Leeds, 1996c.

  65. Gotts, N. M. Using the RCC formalism to describe the topology of spherical regions, Technical report, Report 96.24, School of Computer Studies, University of Leeds, 1996d.

  66. Gotts, N. M. and Cohn, A. G., “A mereological approach to spatial vagueness,” Proceedings, Qualitative Reasoning Workshop 1995 (QR-95), 1995.

  67. Gotts, N. M., Gooday, J. M. and Cohn, A. G. A connection based approach to common-sense topological description and reasoning, The Monist, Vol. 79(1): 51–75, 1996.

    Google Scholar 

  68. Grigni, M., Papadias, D. and Papadimitriou, C. Topological inference, in C. Mellish (ed.), proceedings of the fourteenth international joint conference on artificial intelligence (IJCAI-95), Vol. I, Morgan Kaufmann, pp. 901–906, 1995.

  69. Grzegorczyk, “A. Undecidability of some topological theories,” Fundamenta Mathematicae, Vol. 38: 137–152, 1951.

    Google Scholar 

  70. Haarslev, V. “Formal semantics of visual languages using spatial reasoning,” Proceedings of the 11th IEEE Symposium on Visual Languages, 1995.

  71. Haarslev, V. “A fully formalized theory for describing visual notations,” Proceedings of the AVI'96 post-conference Workshop on Theory of Visual Languages, Gubbio, Italy, 1996.

  72. Haarslev, V. and Möller, R. A qualitative spatial reasoner: progress report, in L. Ironi (ed.), Proceedings of the 11th Symposium on Qualitative Reasoning, Tuscany, Italy, 1997.

  73. Hayes, P. J. “Naive physics I: Ontology for liquids,” in J. R. Hobbs and B. Moore (eds), Formal Theories of the Commonsense World, Ablex, pp. 71–89, 1985a.

  74. Hayes, P. J. “The second naive physics manifesto,” in J. R. Hobbs and B. Moore (eds), Formal Theories of the Commonsense World, Ablex, pp. 1–36, 1985b.

  75. Hernández, D. Qualitative Representation of Spatial Knowledge, Vol. 804 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 1994.

  76. Kahn, K. M. and Saraswat, V. A. Complete visualizations of concurrent programs and their executions, Technical Report Tech. Rpt. SSL-90-83 [P90-00099], Xerox Palo Alto Research Centre, Palo Alto, California, 1990.

    Google Scholar 

  77. Kratochvíl, J. “String graphs ii: recognizing string graphs is NP-hard,” Journal of Combinatorial Theory, Series B, Vol. 52: 67–78, 1991.

    Google Scholar 

  78. Ladkin, P. “Time representation: A taxonomy of interval relations,” Proceedings AAAI-86, Morgan Kaufmann: Los Altos, pp. 360–366, 1986.

    Google Scholar 

  79. Ladkin, P. The Logic of Time Representation, PhD thesis, University of California, Berkeley. Kestrel Institute report KES.U.87.13, 1987.

    Google Scholar 

  80. Ladkin, P. and Maddux, R. “On binary constraint problems,” Journal of the ACM, Vol. 41(3): 435–469, 1994.

    Google Scholar 

  81. Lehmann, F. and Cohn, A. G. “The EGG/YOLK reliability hierarchy: Semantic data integration using sorts with prototypes,” Proc. Conf. on Information Knowledge Management, ACM Press, pp. 272–279, 1994.

  82. Leonard, H. S. and Goodman, N. “The calculus of individuals and its uses,” Journal of Symbolic Logic, Vol. 5: 45–55, 1940.

    Google Scholar 

  83. Leśniewski, S. O podstawack matematyki, Prezeglad Filosoficzny, 1927–1931.

  84. Mavrovouniotis, M. and Stephanopoulos, G. “Formal order-of-magnitude reasoning in process engineering,” Computers and Chemical Engineering, Vol. 12: 867–881, 1988.

    Google Scholar 

  85. McCune, W. Otter 2.0 users guide, Technical report, Argonne National Laboratory, Argonne, Illinois, 1990.

    Google Scholar 

  86. McKinsey, J. and Tarski, A. “The algebra of topology,” Annals of Methematics, Vol. 45: 141–191, 1944.

    Google Scholar 

  87. Mukerjee, A. and Joe, G. “A qualitative model for space,” Proceedings AAAI-90, Morgan Kaufmann: Los Altos, pp. 721–727, 1990.

    Google Scholar 

  88. Nebel, B. “Computational properties of qualitative spatial reasoning: First results,” Procedings of the 19th German AI Conference, 1995a.

  89. Nebel, B. “Reasoning about temporal relations: a maximal tractable subset of Allen's interval algebra,” Journal of the Association for Computing Machinery, Vol. 42(1): 43–66, 1995b.

    Google Scholar 

  90. Nerode, A. Some let cures on intuitionistic logic, in S. Homer, A. Nerode, R. Platek,, G. Sacks and A. Scedrov (eds), Logic and Computer Science, Vol. 1429 of Lecture Notes in Mathematics, Springer-Verlag, pp. 12–59, 1990.

  91. Nicod, J. Geometry in the Sensible World, Doctoral thesis, Sorbonne, 1924, English translation in Geometry and Induction, Routledge and Kegan Paul, 1969.

  92. Pratt, I. and Schoop, D. A complete axiom system for polygonal mereotopology of the plane, Technical Report UMCS-97-2-2, University of Manchester, 1997.

  93. Raiman, O. “Order of magnitude reasoning,” AAAI-86: Proceedings of the National Conference on AI, pp. 100–104, 1986.

  94. Randell, D. A. and Cohn, A. G. “Exploiting lattices in a theory of space and time,” Computers and Mathematics with Applications, Vol. 23(6–9): 459–476, 1992. Also appears in “Semantic Networks”, ed. F. Lehmann, Pergamon Press, Oxford, pp. 459–476, 1992.

    Google Scholar 

  95. Randell, D. A., Cohn, A. G. and Cui, Z. “Computing transitivity tables: A challenge for automated theorem provers,” Proceedings CADE 11, Springer Verlag, Berlin, 1992.

    Google Scholar 

  96. Randell, D. A., Cui, Z. and Cohn, A. G. “A spatial logic based on regions and connection,” Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992.

    Google Scholar 

  97. Randell, D. and Cohn, A. Modelling topological and metrical properties of physical processes, in R. Brachman, H. Levesque and R. Reiter (eds), Proceedings 1st International Conference on the Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, Los Altos, pp. 55–66, 1989.

    Google Scholar 

  98. Renz, J. and Nebel, B. On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the Region Connection Calculus, in M. E. Pollak (ed.), Proceedings of IJCAI-97, 1997.

  99. Schlieder, C. “Representing visible locations for qualitative navigation,” in N. P. Carreté and M. G. Singh (eds), Qualitative Reasoning and Decision Technologies, CIMNE: Barcelona, pp. 523–532, 1993.

    Google Scholar 

  100. Simons, P. Parts: A Study In Ontology, Clarendon Press: Oxford 1987.

    Google Scholar 

  101. Sklansky, J. “Measuring concavity on a rectangular mosaic,” IEEE Trans. on Computers, Vol. C-21(12): 1355–1364, 1972.

    Google Scholar 

  102. Smith, B. Ontology and the logistic analysis of reality, in Analytic Phenomenology, G. Haefliger and P.M. Simons, (Eds.), Kluwer Academic Publsihers: The Netherlands, 1994.

    Google Scholar 

  103. Stock, O. (ed.) Temporal and spatial reasoning, Kluwer, 1997.

  104. Tarski, A. “Der aussagenkalkül und die topologie [sentential calculus and topology],” Fundamenta Mathematicae, Vol. 31: 103–134, 1938. English translation in A. Tarski, Logic, Semantics, Metamathematics, Oxford Clarendon Press, 1956.

  105. Tarski, A. Foundations of the geometry of solids, Logic, Semantics, Metamathematics, Oxford Clarendon Press, chapter 2. trans. J.H. Woodger, 1956.

  106. Tarski, A. “What is elementary geometry?” in L. Brouwer, E. Beth and A. Heyting (eds), The Axiomatic Method (with special reference to geometry and physics), North-Holland, Amsterdam, pp. 16–29, 1959.

    Google Scholar 

  107. Van Benthem, J. F. A. K. The Logic of Time, D. Reidel Publishing Company: Dordrecht, Holland, 1983.

    Google Scholar 

  108. Varzi, A. “Reasoning about space: the hole story,” Logic and Logical Philosophy, Vol. 4: 3–39, 1996a.

    Google Scholar 

  109. Varzi, A. “Spatial reasoning in a holey world,” in P. Torasso (ed.), Advances in Artificial Intelligence, Proceedings of the 3rd Congress of the Italian Association for Artificial Intelligence, number 728 in Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin and Heidelberg, 326–336, 1996b.

    Google Scholar 

  110. Vieu, L. Sémantique des relations spatiales et inférences spatio-temporelles, PhD thesis, Université Paul Sabatier, Toulouse, 1991.

    Google Scholar 

  111. Vilain, M. and Kautz, H. “Constraint propagation algorithms for temporal reasoning,” Proceedings of the 5th AAAI conference, Philadelphia, 377–382, 1986.

  112. Weld, D. S. and De Kleer, J. (eds). Readings in Qualitative Reasoning About Physical Systems, Morgan Kaufman: San Mateo, Ca, 1990.

    Google Scholar 

  113. Whitehead, A. N. Process and Reality, The MacMillan Company: New York, 1929.

    Google Scholar 

  114. Worboys, M. F. and Bofakos, P. “A canonical model for a class of areal spatial objects,” in D. Abel and B. C. Ooi (eds), Advances in Spatial Databases: Third International Symposium, SSD'93, Vol. 692 of Lecture Notes in Computer Science, Springer-Verlag, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, A.G., Bennett, B., Gooday, J. et al. Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica 1, 275–316 (1997). https://doi.org/10.1023/A:1009712514511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009712514511

Navigation