Skip to main content
Log in

Use of Microneurography to Evaluate Sympathetic Activity in Hypertension: A Brief Review

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Muscle sympathetic nerve activity (MSNA) is an important variable in the study of autonomic activity in both normotensive and hypertensive subjects. It is measured directly from the peroneal nerve using microneurography. The technique is complex and difficult to learn, but yields accurate and direct information about sympathetic nerve impulses. MSNA provides not only greater reproducibility than other measures of sympathetic activity, but also a clearer and more consistent reflection of changes in sympathetic activity caused by changes in the subject's status or disease. This technique has been used primarily in basic research settings studying stress and hypertension. It has much potential to enhance our understanding of sympathetic nervous system activity and its role in applied psychophysiology and biofeedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anderson, E. A., Sinkey, C. A., Lawton, W. J., & Mark, A. L. (1989). Elevated sympathetic nerve activity in borderline hypertensive humans. Hypertension, 14, 177-183.

    Google Scholar 

  • Anderson, E. A., Sinkey, C. A., & Mark, A. L. (1991). Mental stress increases sympathetic nerve activity during sustained baroreceptor stimulation in humans. Hypertension, 17(suppl. III), 43-49.

    Google Scholar 

  • Calhoun, D. A., Mutinga, M. L., Collins, A. S., Wyss, J. M., & Oparil, S. (1993). Normotensive blacks have heightened sympathetic response to cold pressor test. Hypertension, 22, 801-805.

    Google Scholar 

  • Calhoun, D. A., Mutinga, M. L., Wyss, J. M., & Oparil, S. (1994). Muscle sympathetic nervous activity in black and Caucasian hypertensive subjects. Journal of Hypertension, 12, 1291-1296.

    Google Scholar 

  • Callister, R., Suwarno, N. O., & Seals, D. R. (1992). Sympathetic activity is influenced by task difficulty and stress perception during mental challenge in humans. Journal of Physiology, 454, 373-387.

    Google Scholar 

  • Converse, R. L., Jacobsen, T. N., Toto, R. D., Jost, C. M. T., Cosentino, D. O., Fouad-Tarazi, F., & Victor, R. G. (1992). Sympathetic overactivity in patients with chronic renal failure. New England Journal of Medicine, 327, 1912-1918.

    Google Scholar 

  • Eckberg, D. L., Wallin, B. G., Fagius, J., Lundberg, L., & Torebjork, H. E. (1989). Prospective study of symptoms after human microneurography. Acta Physiologica Scandinavia, 137, 567-569.

    Google Scholar 

  • Fagius, J., Karhuvaara, S., & Sundlof, G. (1989). The cold pressor test: Effects on sympathetic nerve activity in human muscle and skin nerve fascicles. Acta Physiologica Scandinavia, 137, 325-334.

    Google Scholar 

  • Floras, J. S., & Hara, K. (1993). Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. Journal of Hypertension, 11, 647-655.

    Google Scholar 

  • Gandevia, S. C., & Hales, J. P. (1997). The methodology and scope of human microneurography. Journal of Neuroscience Methods, 74, 123-136.

    Google Scholar 

  • Grassi, G., Bolla, G., Seravalle, G., Turri, C., Lanfranchi, A., & Mancia, G. (1997). Comparison between reproducibility and sensitivity of muscle sympathetic nerve traffic and plasma noradrenaline in man. Clinical Science, 92, 285-289.

    Google Scholar 

  • Grassi, G., Cattaneo, B. M., Seravalle, G., Lanfranchi, A., Bolla, G., & Mancia, G. (1997). Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension, 29, 802-807.

    Google Scholar 

  • Grassi, G., Cattaneo, B. M., Seravalle, G., Lanfranchi, A., & Mancia, G. (1998). Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension, 31 (part 1), 68-72.

    Google Scholar 

  • Grassi, G., Colombo, M., Seravalle, G., Spaziani, D., & Mancia, G. (1998). Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension, 31 (part 1), 64-67.

    Google Scholar 

  • Grassi, G., Seravalle, G., Cattaneo, B. M., Bolla, G. B., Lanfranchi, A., Colombo, M., Giannattasio, C., Brunani, A., Cavagnini, F., & Manci, G. (1995). Sympathetic activation in obese normotensive subjects. Hypertension, 25 (part 1), 560-563.

    Google Scholar 

  • Guyton, A. C. (1996). Textbook of Medical Physiology, 9th ed., Philadelphia: Saunders.

    Google Scholar 

  • Jones, P. P., Spraul, M., Matt, K. S., Seals, D. R., Skinner, J. S., & Ravussin, E. (1996). Gender does not influence sympathetic neural reactivity to stress in healthy humans. American Journal of Physiology (Heart. Circ. Physiol.) 39, H350-H357.

    Google Scholar 

  • Littell, E. H. (1981). After-effect of microneurography in humans. Physical Therapy, 61, 1585-1586.

    Google Scholar 

  • Mark, A. L. (1990). Regulation of sympathetic nerve activity in mild human hypertension. Journal of Hypertension, 8(suppl. 7), S67-S75.

    Google Scholar 

  • Matsukawa, T., Mano, T., Gotch, E., & Ishii, M. (1993). Elevated sympathetic nerve activity in patients with accelerated essential hypertension. Journal of Clinical Investigation, 92, 25-28.

    Google Scholar 

  • Ng, A. V., Callister, R., Johnson, D. G., & Seals, D. R. (1993). Age and gender influence muscle sympathetic nerve activity at rest in healthy humans. Hypertension, 21, 498-503.

    Google Scholar 

  • Ribot, E., Roll, J. P., & Vedel, J. P. (1986). Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. Journal of Physiology, 375, 251-268.

    Google Scholar 

  • Victor, R. G., Leimbach, W. N., Seals, D. R., Wallin, B. G., & Mark, A. L. (1987). Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension, 9, 429-436.

    Google Scholar 

  • Wallin, B. G., & Fagius, J. (1988). Peripheral sympathetic neural activity in conscious humans. Annual Review of Physiology, 50, 565-576.

    Google Scholar 

  • Wallin, B. G., Esler, M., Dorward, P., Eisenhofer, G., Ferrier, C., Westerman, R., & Jennings, G. (1992). Simultaneous measurement of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. Journal of Physiology, 453, 45-58.

    Google Scholar 

  • Yamada, Y., Miyajima, E., Tochikubo, O., Matsukawa, T., & Ishii, M. (1989). Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension, 13, 870-877.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yucha, C.B. Use of Microneurography to Evaluate Sympathetic Activity in Hypertension: A Brief Review. Appl Psychophysiol Biofeedback 25, 55–63 (2000). https://doi.org/10.1023/A:1009537506603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009537506603

Navigation