Skip to main content
Log in

Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The large scale production of recombinant collagen for use in biomaterials requires an efficient expression system capable of processing a large (>400 Kd) multisubunit protein requiring post-translational modifications. To investigate whether the mammary gland of transgenic animals fulfills these requirements, transgenic mice were generated containing the αS1-casein mammary gland-specific promoter operatively linked to 37 Kb of the human α1(I) procollagen structural gene and 3′ flanking region. The frequency of transgenic lines established was 12%. High levels of soluble triple helical homotrimeric [(α1)3] type I procollagen were detected (up to 8 mg/ml) exclusively in the milk of six out of 9 lines of lactating transgenic mice. The transgene-derived human procollagen chains underwent efficient assembly into a triple helical structure. Although proline or lysine hydroxylation has never been described for any milk protein, procollagen was detected with these post-translational modifications. The procollagen was stable in mil; minimal degradation was observed. These results show that the mammary gland is capable of expressing a large procollagen gene construct, efficiently assembling the individual polypeptide chains into a stable triple helix, and secreting the intact molecule into the milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barash I, Faerman A, Ratovitsky T, Puzis R, Nathan M, Hurwitz DR and Shani M (1994) Ectopic expression of b-lactoglobulin/human serum albumin fusion genes in transgenic mice: hormonal regulation and in situ localization. Transgenic Res 3: 141–151.

    Google Scholar 

  • Barsh GS, Roush CL and Gelinas RE (1984) DNA and chromatin structure of the human alpha 1(I) collagen gene. J Biol Chem 259: 14906–14913.

    Google Scholar 

  • Berg RA and Prockop DJ (1973a) Thermal transition of a nonhydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52: 115–120.

    Google Scholar 

  • Berg RA and Prockop DJ (1973b) Purification of carbon-14 proto collagen and its hydroxylation by prolyl hydroxylase. Biochem 12: 3395–3401.

    Google Scholar 

  • Brem G, Hartl P, Besenfelder U, Wolf E, Zinovieva N and Pfaller R (1994) Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1 (IGF-1) in the mammary gland of transgenic rabbits. Gene 149: 351–355.

    Google Scholar 

  • Bruckner P and Prockop DJ (1981) Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Analyt Biochem 110: 360–368.

    Google Scholar 

  • Buhler T, Bruyere T, Went DF, Stranzinger G and Burki K (1990) Rabbit beta-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Bio/Technology 8: 140–143.

    Google Scholar 

  • Byers PH (1990) Brittle bones-fragile molecules: disorders of collagen gene structure and expression. Trends Genet 6: 293–300.

    Google Scholar 

  • Cho M-I and Garant PR (1981) Sequential events in the formation of collagen secretion granules with special reference to the development of segment-long spacing-like aggregates. Anat Rec 199: 309–320.

    Google Scholar 

  • Chomczynski P and Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analyt Biochem 162: 156–159.

    Google Scholar 

  • Chu M-L, de Wet WJ, Bernard M and Ramirez F (1985) Fine structure analysis of the human pro-alpha-1(I) collagen gene: promoter structure, Alu repeats, and polymorphic transcripts. J Biol Chem 260: 2315–2330.

    Google Scholar 

  • Crouch E and Bornstein P (1978) Collagen synthesis by human amniotic fluid cells in culture: Characterization of a procollagen with three identical proa1(I) chains. Biochem 17: 3499–3510.

    Google Scholar 

  • D'Alessio M, Bernard M, Pretorius PJ, De Wet WJ and Ramirez F (1988) Complete nucleotide sequence of the region encompassing the first twenty-five exons of the human pro-alpha 1(I) collagen gene (COL1A1). Gene 67: 110.

    Google Scholar 

  • Deak SB, Nicholls A, Pope FM, and Prockop DJ (1983) The molecular defect in a nonlethal variant of osteogenesis imperfecta. Synthesis of proa2(I) chains which are not incorporated into trimers of type I procollagen. J Biol Chem 258: 1192–15197.

    Google Scholar 

  • Deak SB, van der Rest M and Prockop DJ (1985) Altered helical structure of a homotrimer of a1(I) chains synthesized by fibroblasts from a variant of osteogenesis imperfecta. Collagen Rel Res 5: 305–313.

    Google Scholar 

  • Dickson LA, Pihlajaniemi T, Deak S, Pope MF, Nicholls AC and Prockop DJ (1984) Nuclease S1 mapping of a homozygous mutation in the carboxyl-propeptide-coding region of the pro alpha 1(I) collagen gene in a patient with osteogenesis imperfecta. Proc Natl Acad Sci USA 81: 4524–4528.

    Google Scholar 

  • Drews R, Paleyanda RK, Lee TK, Chang RR, Rehemtulla A, Kaufman RJ, DrohanWN and Lubon H (1995) Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc Natl Acad Sci USA 92: 10462–10466.

    Google Scholar 

  • Drohan WN, Zhang D-W, Paleyanda RK, Chang R, Wroble M, Velander WH and Lubon H (1994) Inefficient processing of human protein C in the mouse mammary gland. Transgenic Res 3: 355–364.

    Google Scholar 

  • Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA and Gordon K (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Bio/Technology 9: 835–838.

    Google Scholar 

  • Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J and Roberts B (1994) Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Bio/Technology 12: 699–702.

    Google Scholar 

  • Echelard Y (1996) Recombinant protein production in transgenic animals. Curr Opin Biotech 7: 536–540.

    Google Scholar 

  • Elson ML (1993) Dermal filler materials. Dermatologic Clinics 11: 361–367.

    Google Scholar 

  • Feick RG and Shiozawa JA (1990) A high-yield method for the isolation of hydrophobic proteins and peptides from polyacrylamide gels for protein sequencing. Analyt Biochem 187: 205–211.

    Google Scholar 

  • Fertala A, Sieron AL, Ganguly A, Li SW, Ala-Kokko L, Anumula KR and Prockop DJ (1994) Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem J 298: 31–37.

    Google Scholar 

  • Fichard A, Tillet E, Delacoux F, Garrone R and Ruggiero F (1997) Human recombinant a1(V) collagen chain. J Biol Chem 272: 30083–30087.

    Google Scholar 

  • Fisher LW, Lindner W, Young MF and Termine JD (1989) Synthetic peptide antisera: their production and use in the cloning of matrix proteins. Conn Tissue Res 21: 43–50.

    Google Scholar 

  • Geddis AE and Prockop DJ (1993) Expression of human COL1A1 gene in stably transfected HT 1080 cells. Matrix 13: 399–405.

    Google Scholar 

  • Gelman RA, Williams BR and Piez KA (1979) Collagen fibril formation. Evidence for a multistep process. J Biol Chem 254: 180–186.

    Google Scholar 

  • Ghersi G, Fiura AM and Minafra S (1989) Direct adhesion to type I and homotrimer collagens by breast carcinoma and embryonic epithelial cells in culture: a comparative study. Eur J Cell Biol 50: 279–284.

    Google Scholar 

  • Gordon K, Lee E, Vitale JA, Smith AE, Westphal H and Hennighausen L (1987) Production of human tissue plasminogen activator in transgenic mice. Bio/Technology 5: 1183–1187.

    Google Scholar 

  • Gorham SD (1991) Collagen as a biomaterial. In: Byrom D (ed.) Biomaterials, (pp. 55–122) Stockton Press, New York.

  • Greenberg NM, Anderson JW, Hsueh AJW, Nishimori K, Reeves JJ, de Avila DM, Ward DN and Rosen JM (1991) Expression of biologically active heterodimeric bovine follicle-stimulating hormone in milk of transgenic mice. Proc Natl Acad Sci USA 88: 8327–8331.

    Google Scholar 

  • Hansson L, Edlund M, Edlund A, Johansson T, Marklund SL, Fromm S, Stronqvist M and Tornell J (1994) Expression and characterization of biologically active human extracellular superoxide dismutase in milk of transgenic mice. J Biol Chem 269: 5358–5363.

    Google Scholar 

  • Haralson MA, Jacobson HR and Hoover RL (1987) Collagen polymorphism in cultured rat kidney mesangial cells. Lab Invest 57: 513–523.

    Google Scholar 

  • Hennighausen L (1990) The mammary gland as a bioreactor: production of foreign proteins in milk. Prot Expr Pur 1: 3–5.

    Google Scholar 

  • Holmes DF, Chapman JA, Prockop DJ and Kadler KE (1992) Growing tips of type I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc Natl Acad Sci USA 89: 9855–9859.

    Google Scholar 

  • Houdebine LM (1994) Production of pharmaceutical proteins from transgenic animals. J Biotechnol 34: 269–287.

    Google Scholar 

  • Houdebine LM (1995) The production of pharmaceutical proteins from the milk of transgenic animals. Reprod Nutr Dev 35: 609–617.

    Google Scholar 

  • Hulmes DJS, Bruns RR and Gross J (1983) On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci USA 80: 388–392.

    Google Scholar 

  • James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV and Jenkins N (1995) N-glycosylation of recombinant human interferon-g produced in different animal expression systems. Bio/Technology 13: 592–596.

    Google Scholar 

  • Jimenez S, Harsch M and Rosenbloom J (1973) Hydroxyproline stabilizes the triple helix of chick tendon collagen. Biochem Biophys Res Commun 52: 106–114.

    Google Scholar 

  • Jimenez SA, Bashey RI, Benditt M and Yankowski R (1977) Identi-fication of collagen a1(I) trimer in embryonic chick tendons and calvaria. Biochem Biophys Res Commun 78: 1354–1361.

    Google Scholar 

  • John CA, Watson R, Kind AJ, Scott AR, Kadler KE and Bulleid NJ (1999) Expression of an engineered form of recombinant procollagen in mouse milk. Nature Biotechnol 17: 385–389.

    Google Scholar 

  • Kadler DE, Hojima Y and Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem 262: 15696–15701.

    Google Scholar 

  • Kadler KL (1994) Extracellular matrix I. Fibril forming collagens. In: Protein Profile 1: (pp. 519–638) Academic Press, New York.

    Google Scholar 

  • Kao WWY, Prockop DJ and Berg RA (1979) Kinetics for the secretion of nonhelical procollagen by freshly isolated tendon cells. J Biol Chem 254: 2234–2243.

    Google Scholar 

  • Kay EP (1986) Rabbit corneal endothelial cells modulated by polymorphonuclear leukocytes are fibroblasts. Invest Ophthalmol Vis Sci 27: 891–897.

    Google Scholar 

  • Keefe J, Wauk L, Chu S and DeLustro F (1992) Clinical use of injectable bovine collagen; a decade of experience. Clinical Materials 9: 155–162.

    Google Scholar 

  • Kivirikko KI, Halaakoski T, Tasanen K, Vuori K, Myllyla R, Parkkonen T and Pihlajaniemi T (1990) Molecular biology of prolyl 4-hydroxylase. Annal NY Acad Sci 580: 132–142.

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227: 680–685.

    Google Scholar 

  • Lamberg A, Helaakoski T, Myllyharju J, Peltonen S, Notbolm H, Pihlajaniemi T and Kivirikko KI (1996) Characterization of human type III collagen expressed in a baculovirus system. J Biol Chem 271: 11988–11995.

    Google Scholar 

  • Leheup BP, Federspiel SJ, Guerry-Force ML, Wetherall NT, Commers PA, DiMari SJ and Haralson MA (1989) Extracellular matrix biosynthesis by cultured fetal rat lung epithelial cells. Lab Invest 60: 791–807.

    Google Scholar 

  • Lubon H, Paleyanda RK, Velander WH and Drohan WN (1996) Blood proteins from transgenic animal bioreactors. Transfusion Med Rev 10: 131–143.

    Google Scholar 

  • Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC, Lopez C and Houdebine LM (1996) The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Develop 36: 555–563.

    Google Scholar 

  • Meade H, Gates L, Lacy E and Lonberg N (1990) Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Bio/Technology 8: 443–446.

    Google Scholar 

  • Miller EJ and Gay S (1982) Collagen: an overview. Methods Enzymol 82: 3–32.

    Google Scholar 

  • Miller EJ and Rhodes RK (1982) Preparation and characterization of the different types of collagen. ibid 82: 33–64.

    Google Scholar 

  • Minafra S, Morello V, Glorioso F, La Fiura AM, Tomasino RM, Feo S, McIntosh D and Woolley DE (1989) A new cell line (8701-BC) from primary ductal infiltrating carcinoma of human breast. Br J Cancer 60: 185–192.

    Google Scholar 

  • Miyata T, Taira T and Noishiki Y (1992) Collagen engineering for biomaterial use. Clin Materials 9: 139–148.

    Google Scholar 

  • Munksgaard EC, Rhodes M, Mayne R and Butler WT (1978) Collagen synthesis and secretion by rat incisor odontoblasts in organ culture. Eur J Biochem 82: 609–617.

    Google Scholar 

  • Myllyharju J, Lamberg A, Notbohm H, Fietzek PP, Pihlajaniemi T and Kivirikko KI (1997) Expression of wild-type and modi-fied proalpha chains of human type I procollagen in insect cells leads to the formation of stable [alpha1(I)]2alpha2(I) collagen heterotrimers and [alphal1(I)]3 homotrimers but not [alpha2(I)]3 homotrimers. J Biol Chem 272: 21824–21830.

    Google Scholar 

  • Narayanan AS and Page RC (1976) Biochemical characterization of collagens synthesized by fibroblasts derived from normal and diseased human gingiva. J Biol Chem 251: 5464–5471.

    Google Scholar 

  • Nicholls AC, Pope FM and Schloon H (1979) Biochemical heterogeneity of osteogenesis imperfecta. Lancet 1: 1193.

    Google Scholar 

  • Niemann H, Halter R, Espanion G, Wrenzycki C, Herrmann D, Lemme E, Carnwath JW and Paul D (1996) Expression of human blood clotting factor VIII (FVIII) constructs in the mammary gland of transgenic mice and sheep. J Anim Breeding Genet 113: 437–444.

    Google Scholar 

  • Paleyanda RK, Zhang D-W, Hennighausen L, McKnight RA and Lubon H (1994) Regulation of human protein C gene expression by the mouse WAP promoter. Transgenic Res 3: 335–343.

    Google Scholar 

  • Paleyanda RK, VelanderWH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, Hoyer LW, Drohan WN and Lubon H (1997) Transgenic pigs produce functional human factor VIII in milk. Nature Biotechnol 15: 971-975.

    Google Scholar 

  • Parker MI, Smith AA and Gevers W (1989) Absence of alpha 2(1) procollagen synthesis in a clone of SV40-transformed WI-38 human fibroblasts. J Biol Chem 264: 7147–7152.

    Google Scholar 

  • Pihlajaniemi T, Dickson LA, Pope FM, Korhonen VR, Nicholls A, Prockop DJ and Myers JC (1984) Osteogenesis imperfecta. Cloning of a proa2(I) collagen gene with a frame-shift mutation. J Biol Chem 259: 12941–12944.

    Google Scholar 

  • Pittius CW, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J and Gordon K (1988) A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc Natl Acad Sci USA 85: 5874–5878.

    Google Scholar 

  • Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, de Boer HA and Strijker J (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res 3: 99–108.

    Google Scholar 

  • Prockop DJ and Kivirikko KI (1995) Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64: 403–434.

    Google Scholar 

  • Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, Bishop P and Foster D (1996) High level expression of recombinant human fibrinogen in the milk of transgenic mice. Nature Biotechnol: 14, 867–871.

    Google Scholar 

  • Rokkones E, Fromm SH, Kareem BN, Klungland, Olstad OK, Hogset A, Iversen J, Bjoro K and Gautvik KM (1995) Human parathyroid hormone as a secretory peptide in milk of transgenic mice. J Cell Biochem 59A: 168–176.

    Google Scholar 

  • Rupard JH, Dimari SJ, Damjanov I and Haralson MA (1988) Synthesis of type I homotrimer collagen molecules by cultured human lung adenocarcinoma cells. Am J Pathol 133: 316–326.

    Google Scholar 

  • Sandell LJ and Boyd CD (1990) Conserved and divergent sequence and functional elements within collagen genes. In Sandell LJ and Boyd CD (eds), Extracellular Matrix Genes (pp. 1–56) Academic Press, New York.

    Google Scholar 

  • Saski T, Katsuhiko A, Ono M, Yamaguchi T, Furuta S and Nagai Y (1987) Ehlers-Danlos syndrome. A variant characterized by deficiency of proa2 chain of type I procollagen. Arch Dermatol 123: 76–79.

    Google Scholar 

  • Shani M, Barash I, Nathan M, Ricca G, Searfoss GH, Dekel I, Faerman A, Givol D and Hurwitz DR (1992) Expression of human serum albumin in the milk of transgenic mice. Transgenic Res 1: 195–208.

    Google Scholar 

  • Stromqvist M, Tornell J, Edlund M, Edlund A, Johansson T, Lindgren K, Lundberg L and Hansson L (1996) Recombinant human bile salt-stimulated lipase: an example of defective O-glycosylation of a protein produced in milk of transgenic mice. Transgenic Res 5: 475–485.

    Google Scholar 

  • Subramanian A, Paleyanda RK, Lubon H, Williams BL, Gwazdauskas FC, Knight JW, Drohan WN and Velander WH (1996) Rate limitations in post-translational processing by the mammary gland of transgenic animals. Annal NY Acad Sci 782: 87–96.

    Google Scholar 

  • Thepot D, Devinoy E, Fontaine M-L, Stinnakre M-G, Massoud M, Kann G and Houdebine ML (1995) Rabbit whey acid protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Mol Reprod Develop 42: 261–267.

    Google Scholar 

  • Towbin H and Staehelin T (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76: 4350-4354.

    Google Scholar 

  • Trentham DE, Dynesius-Trentham RA, Orav EJ, Combitchi D, Lorenzo C, Sewell KL, Hafler DA and Weiner HL (1993) Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261: 1727–1730.

    Google Scholar 

  • Tromp G, Kuivaniemi H, Stacey A, Shikata H, Baldwin CT, Jaenish R and Prockop DJ (1988) Structure of a full-length cDNA clone for the prepro alpha 1(I) chain of human type I procollagen. Biochem J 253: 919–922.

    Google Scholar 

  • Uitto J (1979) Collagen polymorphism: Isolation and partial characterization of a1(I) trimer molecules in normal human skin. Arch Biochem Biophys 192: 371–379.

    Google Scholar 

  • Uusi-Oukari M, Hyttinen J-M, Korhonen V-P, Vasti A, Alhonen L, Janne OA and Janne J (1997) Bovine aS1-casein gene sequences direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice. Transgenic Res 6: 75–84.

    Google Scholar 

  • Van Der Rest M and Bruckner P (1993) Collagen's diversity at the molecular and supramolecular levels. Curr Opin Structural Biol 3: 430–436.

    Google Scholar 

  • Velander WH, Johnson JL, Page RL, Russell CG, Subramanian A and Wilkins TD (1992) High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA 89: 12003–12007.

    Google Scholar 

  • Vuorela A, Myllyharju J, Nissi R, Pihlajaniemi T and Kivirikko KI (1997) Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris. EMBO J 16: 6702–6712.

    Google Scholar 

  • Vuorio E and de Crombrugghe B (1990) The family of collagen genes. Annu Rev Biochem 59: 837–872.

    Google Scholar 

  • Wall RJ, Pursel VG, Shamay A, McKnight RA, Pittius CW and Hennighausen L (1991) High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc Natl Acad Sci USA 88: 1696–1700.

    Google Scholar 

  • Wallace D and Thompson A (1983) Description of collagen fibril formation by a theory of polymer crystallization. Biopolymers 25: 1793–1811.

    Google Scholar 

  • Wei Y, Yarus S, Greenberg NM, Whitsett J and Rosen JM (1995) Production of human surfactant protein C in milk of transgenic mice. Transgenic Res 4: 232–240.

    Google Scholar 

  • Wen J, Kawamata Y, Tojo H, Tanaka, S and Tachi C (1995) Expression of whey acid protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Mol Reprod Develop 41: 399–406.

    Google Scholar 

  • Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I and Coleman A (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9: 830–834.

    Google Scholar 

  • Yarus S, Greenberg NM, Wei Y, Whitsett JA, Weaver TE and Rosen JM (1997) Secretion of unprocessed human surfactant protein B in milk of transgenic mice. Transgenic Res 6: 51–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toman, P.D., Pieper, F., Sakai, N. et al. Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 8, 415–427 (1999). https://doi.org/10.1023/A:1008959924856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008959924856

Navigation