Skip to main content
Log in

Abstract

We investigate the variety corresponding to a logic (introduced in Esteva and Godo, 1998, and called ŁΠ there), which is the combination of Łukasiewicz Logic and Product Logic, and in which Gödel Logic is interpretable. We present an alternative (and slightly simpler) axiomatization of such variety. We also investigate the variety, called the variety of ŁΠ\( \frac{1}{2} \) algebras, corresponding to the logic obtained from ŁΠ by the adding of a constant and of a defining axiom for one half. We also connect ŁΠ\( \frac{1}{2} \) algebras with structures, called f-semifields, arising from the theory of lattice-ordered rings, and prove that every ŁΠ\( \frac{1}{2} \) algebra \( \mathcal{A} \) can be regarded as a structure whose domain is the interval [0, 1] of an f-semifield \( \mathcal{F} \), and whose operations are the truncations of the operations of \( \mathcal{F} \) to [0, 1]. We prove that such a structure \( \mathcal{F} \) is uniquely determined by \( \mathcal{A} \) up to isomorphism, and we establish an equivalence between the category of ŁΠ\( \frac{1}{2} \) algebras and that of f-semifields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alsina, C., Trillas, E., and Valverde, L., 1983, “On some logical connectives for fuzzy set theory,” J. Math. Anal. Appl. 93, 15-26.

    Google Scholar 

  • Baaz, M., 1996, “Infinite-valued Gödel logics with 0-1 projections and relativizations,” pp. 23-33 in GÖDEL'96 Logical Foundations of Mathematics, Computer Science and Physics, P. Hájek, ed., Lecture Notes in Logic, Vol. 6, Berlin: Springer-Verlag.

    Google Scholar 

  • Bigard, A., Keimel, K., and Wolfenstein, S., 1977, Groupes et anneaux reticulés, Lecture Notes in Mathematics, Vol. 608, Berlin: Springer-Verlag.

    Google Scholar 

  • Birkhoff, G. and Pierce, R.S., 1956, “Lattice ordered rings,” An. Acad. Brasil. Ciênc. 28, 41-69.

    Google Scholar 

  • Chang, C.C., 1958, “Algebraic analysis of many-valued logics,” Trans. Amer. Math. Soc. 88, 467-490.

    Google Scholar 

  • Chang, C.C., 1959, “A new proof of the completeness of Łukasiewicz axioms,” Trans. Amer. Math. Soc. 93, 74-80.

    Google Scholar 

  • Cignoli, R. and Mundici, D., 1997a, “An invitation to Chang' MV algebras,” pp. 171-197 in Advances in Algebra and Model-Theory, M. Droste and R. Göbel, eds., Reading, U.K.: Gordon and Breach.

    Google Scholar 

  • Cignoli, R. and Mundici, D., 1997b, “An elementary proof of Chang's Completeness Theorem for the infinite-valued calculus of Łukasiewicz,” Studia Logica 58, 79-97.

    Google Scholar 

  • Cignoli, R., D'Ottaviano, I.M.L., and Mundici, D., 1995, “Algebras das logicas de Łukasiewicz,” Centro de Logica, Epistemologia e Historia de Ciencia UNICAMP, Campinas, Brazil.

    Google Scholar 

  • Esteva, F., Godo, L., Hájek, P., and Navara, N., 1998, “Residuated fuzzy logics with an involutive negation,” submitted. Also as IIIA Research Report 98/09, Bellaterra, Barcelona, Spain.

  • Esteva, F. and Godo, L., 1998, “Putting together Łukasiewicz and Product logic,” Preprint.

  • Gödel, K., 1932, “Zum intuitionistischen Aussagenkalkül,” Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 69, 65-66.

    Google Scholar 

  • Gumm, H.P. and Ursini, U., 1984, “Ideals in universal algebra,” Algebra Universalis 19, 45-54.

    Google Scholar 

  • Hájek, P., 1988, Metamathematics of Fuzzy Logic, Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hájek, P., 1995, “Fuzzy logic and arithmetical hierarchy,” Fuzzy Sets and Systems 73, 359-363.

    Google Scholar 

  • Hájek, P., 1997, “Fuzzy logic and arithmetical hierarchy, II,” Studia Logica 58, 129-141.

    Google Scholar 

  • Hájek, P., Godo, L., and Esteva, F., 1996, “A complete many-valued fuzzy logic with product conjunction,” Arch. Math. Logic 35, 1-19.

    Google Scholar 

  • Hájek, P. and Godo, L., 1998, “Deductive systems of fuzzy logic,” Preprint.

  • Keimel, K., 1995, “Some trends in lattice ordered groups and rings,” pp. 131-161 in Lattice Theory and Its Applications, K.A. Baker and R. Wille, eds., Darmstadt: Helderman Verlag.

    Google Scholar 

  • Isbell, J.R., 1971, “Notes on ordered rings,” Algebra Universalis 1, 393-399.

    Google Scholar 

  • Mackenzie, R., McNulty, G., and Taylor, W., 1987, Algebras, Lattices, Varieties, Vol. I, Monterey, CA: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Mangani, P., 1973, “On certain algebras related to many-valued logics.” Bol. Un. Mat. Ital. (4) 8, 68-78 [in Italian].

    Google Scholar 

  • Montagna, F., 1996, “An algebraic treatment of quantifier-free systems of arithmetic,” Arch. Math. Logic 35, 209-224.

    Google Scholar 

  • Montagna, F. and Sebastiani, V., 1998, “Equational fragments of systems of arithmetic,” Preprint.

  • Mundici, D., 1986, “Interpretation of AFC* algebras in Łukasiewicz sentential calculus,” J. Funct. Anal. 65, 15-63.

    Google Scholar 

  • Panti, G., 1995, “A geometric proof of the completeness of the calculus of Łukasiewicz,” J. Symbolic Logic 60, 563-578.

    Google Scholar 

  • Pavelka, J., 1979, “On Fuzzy Logic I, II, III,” Z. Math. Logik Grundlag Math. 25, 45-52, 119-134, 447-464.

    Google Scholar 

  • Riecan, B., 1998, “On the product MV algebras,” Preprint, Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Rogers, H., 1967, Theory of Recursive Functions and Effective Computability, New York: McGraw-Hill.

    Google Scholar 

  • Rose, A. and Rosser, J.B., 1958, “Fragments of many-valued statement calculi,” Trans. Amer. Math. Soc. 87, 1-53.

    Google Scholar 

  • Takeuti, G. and Titani, S., 1992, “Fuzzy logic and fuzzy set theory,” Arch. Math. Logic 32, 1-32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagna, F. An Algebraic Approach to Propositional Fuzzy Logic. Journal of Logic, Language and Information 9, 91–124 (2000). https://doi.org/10.1023/A:1008322226835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008322226835

Navigation