Skip to main content
Log in

Chemical defenses of seaweeds against microbial colonization

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Any living or non-living surface immersed in seawaterrapidly acquires a bacterial biofilm. For living marineorganisms, biofilm formation can result in the death ofthe host, and thus there is strong evolutionary pressure formarine eukaryotes to evolve mechanisms which inhibit orcontrol the development of biofilms on their surfaces.Some marine eukaryotes are indeed successful incontrolling biofilms on their surfaces, and in manyinstances this control is achieved by the production ofinhibitory chemicals which act at or near the surface ofthe organism. In some cases these natural inhibitors aresimply toxic to bacteria. However, increasingly it appearsthat at least some of these compounds act by interferingspecifically with bacterial characteristics which effect theability of bacteria to colonize their hosts, such asattachment, surface spreading, or the production ofextracellular macromolecules. As an example, theAustralian seaweed Delisea pulchra appears tocontrol bacterial colonization by interfering with abacterial regulatory system (the acylated homoserinelactone system) that regulates several colonizationrelevant bacterial traits. Understanding how marineorganisms control specific bacterial colonization traitsshould provide us with insights into new technologies forthe control of biofilms on artificial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberte RS, Snyder S, Zahuranec BJ & Whetstone M (1992) Biofouling research needs for the United States Navy: Program history and goals. Biofouling 6: 91–95

    Google Scholar 

  • Allen YC, De-Stasio BT & Ramcharan CW (1994) Individual and population level consequences of an algal epibiont on DaphniaLimnol. Oceanogr. 38 (3): 592–601

    Google Scholar 

  • Atlas RM & Barta R (1993) Microbial ecology. Third edition. Benjamin/ Cummings Pub.

  • Angell P & Chamberlain AHL (1991) The role of extracellular products in copper colonization. Int. Biodeterior. 27: 135–143

    Google Scholar 

  • Austin B & Austin DA (1993) Bacterial fish pathogens: disease in farmed and wild fish. Ellis Horwood, Ltd., Chichester, UK

    Google Scholar 

  • Barthel D & Wolfrath B (1989) Tissue sloughing in the sponge Halichondria panicea: a fouling organism prevents being fouled. Oecologia 78: 357–360

    Google Scholar 

  • Becker K & Wahl M (1991) Influence of substratum surface tension on biofouling of artificial substrata in Kiel Bay (Western Baltic): in situstudies. Biofouling 4: 275–291

    Google Scholar 

  • Belas R, Simon M & Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167: 210–218

    Google Scholar 

  • Branch GM & Griffiths CL (1988) The Benguela ecosystem. Part V. The coastal zone. Ocean. Mar. Biol. Annu. Review 26: 395–486

    Google Scholar 

  • Characklis, WG & Marshall KC (1990) Biofilms. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Chatterjee A, Cui Y, Lui Y, Dumenyo CK & Chatterjee AK (1995) Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovorasubsp. carotovorain the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl. Environ. Microbiol. 61: 1959–67

    Google Scholar 

  • Clare AS (1996) Marine natural product antifoulants: Status and potential. Biofouling 9: 211–229

    Google Scholar 

  • Coll JC, Price IR, Konig GM & Bowden BF (1987) Algal overgrowth of alcyonacean soft corals. Mar. Biol. 96: 129–135

    Google Scholar 

  • Correa JA & Sanchez PA (1996) Ecological aspects of algal infectious diseases. Hydrobiologia 326/327: 89–96

    Google Scholar 

  • Costerton JW & Irvin RT (1981) The bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol. 35: 299–324

    Google Scholar 

  • Cowan MM & Fletcher M (1987) Rapid screening method for detection of bacterial mutants with altered adhesion abilities. J. Microbiol. Meth. 7: 241–249

    Google Scholar 

  • Cundell AM, Sleeter TF & Mitchell R (1977) Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microbial Ecology 4: 81–91

    Google Scholar 

  • Dalton HM, Poulsen LK, Halasz P, Angles ML, Goodman AE & Marshall KC (1994) Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J. Bact. 176: 6900–6906

    Google Scholar 

  • D'Antonio C (1985) Epiphytes on the rocky intertidal red alga Rhodomela Larix(Turner) C. Agardh: Negative effects on the host and food for herbivores? J. Exp. Mar. Biol. Ecol. 86: 197–218

    Google Scholar 

  • Davis AR, Targett NM, McConnell OJ & Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorg. Mar. Chem. 3: 86–114

    Google Scholar 

  • De Nys S, Steinberg PD, Rogers CN, Charlton TS & Duncan MW (1996) Quantitative variation of secondary metabolites in the sea hare Aplysia parvulaand its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser. 130: 135–146

    Google Scholar 

  • De Nys R, Wright AD, Konig GM & Stichter O (1993) New halogenated furanones from the marine alga Delisea pulchra(cf. fimbriata). Tetrahedron 49: 11213–11220

    Google Scholar 

  • Dexter SC (1993) Role of microfouling organisms in marine corrosion. Biofouling 7: 97–127

    Google Scholar 

  • Faulkner DJ (1996) Marine natural products. Natural Products Reports 13: 75–125

    Google Scholar 

  • Filion-Myklebust C & Norton TA (1986) Epidermis shedding in the brown seaweed Ascophyllum nodosum(L.) Le Jolis, and its ecological significance. Mar. Biol. Lett. 2: 45–51

    Google Scholar 

  • Fuqua CW, Winans CS & Greenberg PE (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–275

    Google Scholar 

  • Givskov M, De Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD & Kjelleberg S (1996) Eukaryotic interference with homoserine lactone mediated procaryotic signalling. J. Bacteriol. 178: 6618–6622

    Google Scholar 

  • Gil-Turnes MS, Hay ME & Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246: 116–118

    Google Scholar 

  • Gram L, De Nys R, Givskov M, Steinberg PD & Kjelleberg S. Inhibition of homoserine lactone dependent exoprotease activity and protein expression by furanones from the red alga Delisea pulchra. FEMS Microbiol. Lett., submitted

  • Hay ME & Fenical W (1988) Marine plant herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst. 19: 111–145

    Google Scholar 

  • Holmström C & Kjelleberg S (1994) The effect of external biological factors on settlement of marine invertebrate larvae and new antifouling technology. Biofouling 8: 147–160

    Google Scholar 

  • Hornsey IS & Hilde D (1974) The production of antimicrobial compounds by British marine algae. I. Antibiotic producing algae. Br. Phycol. J. 9: 353–361

    Google Scholar 

  • Hunter KA & Liss PS (1979) The surface charge of suspended particles in estuarine and coastal waters. Nature 282: 823–825

    Google Scholar 

  • Jann K & Hoschützky H(1990) Nature and organization of adhesins. Curr. Topics Microbiol. Immunol. 151: 55–70

    Google Scholar 

  • Jennings JG & Steinberg PD (1997) Phlorotanins vs. other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109: 461–473

    Google Scholar 

  • Johnson CR & Mann K (1986) The crustose coralline alga, PhymatolithonFoslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. Exp. Mar. Biol. Ecol. 96: 127–146

    Google Scholar 

  • Kell DB, Kaprelyants AS & Grafen A (1995) Pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evol. 10: 126–129

    Google Scholar 

  • Kjelleberg S, Steinberg PD, Givskov M, Gram L, Manefield M, De Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aq. Microb. Ecol., in press

  • Kirchman D, Graham S, Reisch D, Mitchell R(1982) Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensisGrube (Polychaeta: Spirorbidae). J. Exp. Mar. Biol. Ecol. 56: 153–163

    Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M & Loya Y (1996) Bleaching of the coral Oculina patagonicaby VibrioAK-1. Mar. Ecol.-Prog. Ser. 147: 159–165

    Google Scholar 

  • Leitz T & Wagner T (1993) The marine bacterium Altermonas epejianainduces metamorphosis of the hydroid Hydractinia echinata. Mar. Biol. 115: 173–178

    Google Scholar 

  • Lethwaite JC, Molland AF & Thomas KW (1984) An investigation into the variation of ship skin frictional resistance with fouling. Trans. R. Inst. Naval Architects 127: 269–284

    Google Scholar 

  • Lewandowski Z (1994) Dissolved oxygen gradients nearmicrobially colonized surfaces. In: Geesey G.G., Lewandoswski Z & Flemming H-C (Eds) Biofouling and Biocorrosion in Industrial Water Systems (pp 175–188). Lewis Publishers, Boca Raton, CA

    Google Scholar 

  • Loosdrecht MCM van, Lyklema J, Norde W & Zehnder AJB (1989) Bacterial adhesion: A physicochemical approach. Microb. Ecol. 17: 1–15

    Google Scholar 

  • Littler MM & Littler DS (1995) Impact of CLOD pathogen on Pacific coral reefs. Science 267: 1356–1360

    Google Scholar 

  • Maier I & Muller DG(1986) Sexual pheromones in algae. Biol. Bull. 170: 145–175

    Google Scholar 

  • Maki JS, Rittschof D, Costlow JD & Mitchell R (1988) Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial films. Mar. Biol. 97: 199–206

    Google Scholar 

  • Mann KH (1973) Seaweeds; their productivity and strategy for growth. Science 182: 975–981

    Google Scholar 

  • Marshall KC & Goodman AE (1994) Effects of adhesion on microbial cell physiology. Colloids and Surfaces B: Biointerfaces 2: 1–7

    Google Scholar 

  • Maximilien R (1995) Inhibition of bacteria by seaweed secondary metabolites. BSc Honours Thesis, UNSW, Sydney, Australia

    Google Scholar 

  • McCaffrey EJ & Endean R (1985) Antimicrobial activity of tropical and subtropical sponges. Mar. Biol. 89: 1–8

    Google Scholar 

  • McCarter LL, Showalter RE & Silverman MR (1992) Genetic analysis of surface sensing in Vibrio paramaemolyticus. Biofouling 5: 163–175

    Google Scholar 

  • Neal AL & Yule AB (1994) The interaction between Elminius modestusDarwin cyprid and biofilms of Deleya marinaNCMB1877. J. Exp. Mar. Biol. Ecol. 176: 127–139

    Google Scholar 

  • Neu TR & Marshall KC (1991) Microbial 'footprints'-a new approach to adhesive polymers. Biofouling 3: 101–112

    Google Scholar 

  • Novak R (1984) A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica(L.) Delile. P.S.Z.N. Mar. Ecol. 5: 143–190

    Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Ann. Rev. 30: 273–335

    Google Scholar 

  • Quintero EJ & Weiner RM (1995) Evidence for the adhesive function of the exopolysaccharide of Hyphomonasstrain MHS-3 in its attachment to surfaces. Appl. Env. Microbiol. 61 (5): 1897–1903

    Google Scholar 

  • Reichelt JL & Borowitzka MA (1984) Antimicrobial activity from marine algae: Results of a large scale screening programme. Hydrobiologia 116/117: 158–168

    Google Scholar 

  • Rittschof D & Costlow JD (1989) Bryozoan and barnacle settlement in relation to initial surface wettability; a comparison of laboratory and field studies. In: Ros JD (Ed) Topics in Marine Biology (pp 411–416). Proc. 22nd European Mar. Biol. Symp. Instituto de Ciuencias del Mar, Barcelona, Spain

  • Ruby EG, McFall-Ngai MJ (1992) A squid that glows at night; development of an animal-bacterial mutualism. J. Bacteriol. 174: 4865–4870

    Google Scholar 

  • Salmond GPC, Golby P, Jones S (1994) Global regulation of Erwinia carotovoravirulence factor production. In: Daniels MJ, Downie JA & Osburn AE (Eds) Advances in Molecular Genetics of Plant-Microbe Interactions (pp 13–20). Kluwer Academic, Boston

    Google Scholar 

  • Sand-Jensen K (1977) Effects of epiphytes on eelgrass photosynthesis. Aquatic Botany 3: 55–63

    Google Scholar 

  • Schmitt TM, Hay ME & Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76: 107–123

    Google Scholar 

  • Schneider RP (1996) Conditioning-film induced modification of sub-stratum physicochemistry-an analysis by contact angles. J. Colloid Interface Sci. 182: 204–213

    Google Scholar 

  • Sieburth JM (1979) Sea microbes. Oxford University Press, New York

    Google Scholar 

  • Slattery M, McClintock JB & Heine JN (1995) Chemical defenses in Antarctic soft corals evidence for antifouling compounds. J. Exp. Mar. Biol. Ecol. 190: 61–77

    Google Scholar 

  • Steinberg PD, De Nys R & Kjelleberg S (1997) Chemical inhibition of epibiota by Australian seaweeds. Biofouling, in press

  • Swift S, Bainton NJ & Winston MK (1994) Gram-negatie bacterial communication by N-acyl homoserine lactones: a universal language? Trends Microbiol. 2: 193–198

    Google Scholar 

  • Swift S, Throup JP, Williams P, Salmond GPC & Stewart GSAB (1996) Quorum sensing: a population-density component in the determination of bacterial phenotype. TIBS 21: 214–219

    Google Scholar 

  • Ulitzur S. H-NS protein silences transcription of the luxsystem of Vibrio fischeriand other luminous bacteria cloned in Escherichia coli. Biolum. Chemilum., submitted

  • Unson MD, Holland ND & Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge. Marine Biol. 119: 1–11

    Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175–189-(1995) Bacterial epibiosis on Bahamian and Pacific ascidians. J. Exp. Mar. Biol. Ecol. 191: 239-255-(1996) Living attached: aufwuchs, fouling, epibiosis. In: Nagabhushanam R & Thompson MF (Eds) Fouling Organisms of the Indian Ocean: Biology and Control Technology. Oxford & IBH Pub., New Delhi

    Google Scholar 

  • Wahl M & Sonnichsen H (1992) Marine epibiosis. IV. The periwinkle Littorina littorealacks typical antifouling defences-why are some populations so little fouled? Mar. Ecol. Prog. Ser. 88: 225–235

    Google Scholar 

  • Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110: 45–57

    Google Scholar 

  • Walker RP, Thompson JE & Faulkner DJ (1985) Exudation of biologically active metabolites in the sponge Aplysina fistularis, II. Chemical evidence. Marine Biol. 88: 27–32

    Google Scholar 

  • Wrangstadh M, Conway PL & Kjelleberg S (1989) The role of an extracellular polysaccharide produced by the marine Pseudomonassp. S9 in cellular detachment during starvation. Can. J. Microbiol. 35: 309–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, P.D., Schneider, R. & Kjelleberg, S. Chemical defenses of seaweeds against microbial colonization. Biodegradation 8, 211–220 (1997). https://doi.org/10.1023/A:1008236901790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008236901790

Navigation