Skip to main content
Log in

The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Bjorksten, J. Moser and M. GrÄtzel, Chem. Mater. 6 (1994) 858–863.

    Google Scholar 

  2. S. Hotchandani and P. V. Kamat, J. Electrochem. Soc. 139 (1992) 1630.

    Google Scholar 

  3. K. Rensmo, K. Keis, H. Lindstrom et al., J. Phys. Chem. B 101 (1997) 2598–2601.

    Google Scholar 

  4. B. O. Regan and M. GrÄtzel, Nature 353 (1991) 737–739.

    Google Scholar 

  5. I. Bedja and P. V. Kamat, J. Phys. Chem. 99 (1995) 9187.

    Google Scholar 

  6. R. Vogel, K. Poul and H. Welle, Chem. Phys. Lett. 174 (1990) 241.

    Google Scholar 

  7. R. Vogel, K. Poul and H. Welle, J. Phys. Chem. 98 (1994) 3183.

    Google Scholar 

  8. Diliu and P. V. Kamat, J. Electroanal. Chem. 347 (1993) 451.

    Google Scholar 

  9. M. K. Nazeeruddin, A. Kay and M. GrÄtze, J. Amer. Chem. Soc. 115 (1993) 6832.

    Google Scholar 

  10. S. Hotchandani and P. V. Kamat, Chem. Phys. Lett. 191 (1992) 320.

    Google Scholar 

  11. C. Nasr, S. Hotchandani and P. V. Kamat, J. Phys. Chem. B 101 (1997) 7480.

    Google Scholar 

  12. M. I. Litter and J. A. Navio, J. Photochem. Photobiol. A Chem. 98 (1994) 183.

    Google Scholar 

  13. M. I. Litter and J. A. Navio, J. Mol. Catal. 106 (1996) 267.

    Google Scholar 

  14. L. Palamisono, V. Augugliao, A. Sclafani et al., J. Phys. Chem. 92 (1983) 6710–6713.

    Google Scholar 

  15. J. Soria, J. C. Conesa, V. Augugliaro, et al., J. Phys. Chem. 95 (1991) 274–282.

    Google Scholar 

  16. E. K. Karakitsou and X. E. Verykios, J. Phys. Chem. 97 (1993) 1184–1189.

    Google Scholar 

  17. Wongyong Choi, A. Termin and M. R. Hoffermann, J. Phys. Chem. 98 (1994) 13669–13679.

    Google Scholar 

  18. Humin Cheng, Jimin Ma et al., Chem. Mater. 7 (1995) 663–671.

    Google Scholar 

  19. Yanqin Wang, Humincheng and Yanzhong Hao et al., J. Mater. Sci., accepted.

  20. “Inorganic Chemistry,” People's Education, Shanghai (1978).

  21. G. Svehla, “Vogel's Textbook of Macro and Semimacro Qualitative Inorganic Analysis,” 5th ed. (1978).

  22. A. Hagfeldt and M. GrÄtzel, Chem. Rev. 95 (1995) 49–68.

    Google Scholar 

  23. R. D. Shannon, Acta Cryst. A32 (1976) 751.

    Google Scholar 

  24. Miezeng Su, “Introduction of solid chemistry,” Peking University (1987).

  25. N. DeTacconi, J. Carmona and K. Rajeshwar, J. Phys. Chem. B 101 (1997) 10151–10154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hao, Y., Cheng, H. et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. Journal of Materials Science 34, 2773–2779 (1999). https://doi.org/10.1023/A:1004658629133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004658629133

Keywords

Navigation