Skip to main content
Log in

Faecal pellet production by Arctic under-ice amphipods – transfer of organic matter through the ice/water interface

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The underside of Arctic sea ice is inhabited by several autochthonous amphipod species (Apherusa glacialis, Onisimus spp., Gammarus wilkitzkii). The amphipods graze on ice-bound organic matter, such as ice algae, detritus and ice fauna, and release faecal pellets into the underlying water column, thus forming a direct link between the sea ice and the pelagic ecosystems. Experiments on faecal pellet production rates showed species-specific differences, which were related to size of the animals. The smallest species, A. glacialis, produced the highest mean number of pellets (15.4 pellets ind.-1 d-1), followed by Onisimus spp. (2.7 pellets ind.-1 d-1) and the largest species, G. wilkitzkii (1.1 pellets ind.-1 d-1). Relative carbon content of the pellets was very similar in all species (21.2–22.6% dry mass). Juvenile amphipods (Onisimus spp., G. wilkitzkii) produced more pellets with less POC than adults. Based on field determinations of the POC concentration in the lowermost 2 cm of the sea ice (mean: 36.4 mg C m-2) and mean amphipod abundances (A. glacialis: 33.8 ind. m-2, Onisimus spp.: 0.5 ind. m-2, G. wilkitzkii: 9.4 ind. m-2) in the Greenland Sea in summer 1994, the amount of POC transferred from the ice to the water by faecal pellet production was estimated (0.7 mg C m-2 d-1 or almost 2% of ice-bound carbon). Since this process probably takes place in all ice-covered Arctic regions as well as during all seasons, grazing and pellet production by under-ice amphipods contributes significantly to matter flux across the ice/water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, K. & E. C. Carmack, 1989. The role of sea ice and other freshwater in the Arctic circulation. J. Geophys. Res. 94: 14485–14498.

    Google Scholar 

  • Alldredge, A. L., C. C. Gottschalk & S. MacIntyre, 1987. Evidence for sustained residence of macrozooplankton faecal pellets in surface waters off Southern California. Deep-Sea Res. 34: 1641–1659.

    Google Scholar 

  • Andreassen, I., E.-M. Nöthig & P. Wassmann, 1996. Vertical particle flux on the shelf off northern Spitsbergen, Norway. Mar. Ecol. Prog. Ser. 137: 215–228.

    Google Scholar 

  • Arar, E. J. & G. B. Collins, 1992. In vitro determination of Chlorophyll a and Phaeophytin a in marine and freshwater phytoplankton by fluorescence. U.S. EPA, Cincinnati: 14 pp.

    Google Scholar 

  • Bathmann, U. V., T. T. Noji, M. Voss & R. Peinert, 1987. Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser. 38: 45–51.

    Google Scholar 

  • Bauerfeind, E., B. v. Bodungen, K. Arndt & W. Koeve, 1994. Particle flux and composition of sedimenting matter in the Greenland Sea. J. Mar. Syst. 5: 411–423.

    Google Scholar 

  • Booth, J. A., 1984. The epontic algal community of the ice edge zone and its significance to the Davis Strait ecosystem. Arctic 37: 234–243.

    Google Scholar 

  • Bradstreet, M. S. W. & W. E. Cross, 1982. Trophic relationships at high Arctic ice edges. Arctic 35: 1–12.

    Google Scholar 

  • Carey, A. G., 1987. Particle flux beneath fast ice in the shallow southwestern Beaufort Sea, Arctic Ocean. Mar. Ecol. Prog. Ser. 40: 247–257.

    Google Scholar 

  • Carey, A. G., 1992. The ice fauna in the shallow southwestern Beaufort Sea, Arctic Ocean. J. Mar. Syst. 3: 225–236.

    Google Scholar 

  • Carey, A. G. & P. A. Montagna, 1982. Arctic sea ice faunal assemblage: first approach to description and source of the underice meiofauna. Mar. Ecol. Prog. Ser. 8: 1–8.

    Google Scholar 

  • Clarke, A. & L. S. Peck, 1991. The physiology of polar marine zooplankton. Polar Res. 10: 355–369.

    Google Scholar 

  • Clarke, A., L. B. Quetin & R. M. Ross, 1988. Laboratory and field estimates of the rate of faecal pellet production by antarctic krill, Euphausia superba. Mar. Biol. 98: 557–563.

    Google Scholar 

  • Colony, R. & A. S. Thorndike, 1985. Sea ice motion as a drunkard's walk. J. Geophys. Res. 90: 965–974.

    Google Scholar 

  • Cross, W. E., 1982. Under-ice biota at the Pond Inlet ice edge and in adjacent fast ice areas during spring. Arctic 35: 13–27.

    Google Scholar 

  • Fahrbach, E., 1995. Die Expedition ARKTIS X/1 des Forschungsschiffes 'Polarstern' 1994. Ber. Polarforsch. 181: 1–79.

    Google Scholar 

  • González, H. E. & V. Smetacek, 1994. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.

    Google Scholar 

  • Gradinger, R., 1999. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133: 745–754.

    Google Scholar 

  • Gradinger, R. & Q. Zhang, 1997. Vertical distribution of bacteria in Arctic sea ice from the Barents and Laptev Seas. Polar Biol. 17: 448–454.

    Google Scholar 

  • Gradinger, R., M. Spindler & D. Henschel, 1991. Development of Arctic sea-ice organisms under graded snow cover. Polar Res. 10: 295–307.

    Google Scholar 

  • Grainger, E. H. & A. A. Mohammed, 1986. Copepods in Arctic sea ice. Syllogeus 58: 303–310.

    Google Scholar 

  • Grainger, E. H., S. I. C. Hsiao, N. Pinkewycz, A. A. Mohammed & V. Neuhof, 1985. The food of ice fauna and zooplankton in Frobisher Bay. Can. Data Rep. Fish. Aquat. Sci. 558: 1–67.

    Google Scholar 

  • Horner, R. A., 1976. Sea ice organisms. Oceanogr. Mar. Biol. ann. Rev. 14: 167–182.

    Google Scholar 

  • Horner, R. A., 1985. Ecology of sea ice microalgae. In Horner, R. A. (ed.), Sea Ice Biota, CRC Press, Boca Raton: 83–103.

    Google Scholar 

  • Horner, R. A. & G. C. Schrader, 1982. Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35: 485–503.

    Google Scholar 

  • Ikävalko, J. & R. Gradinger, 1997. Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol. 17: 473–481.

    Google Scholar 

  • Krause, G., 1996. The expedition ARKTIS-XI/2 of RV 'Polarstern' in 1995. Ber. Polarforsch. 197: 1–65.

    Google Scholar 

  • Lampitt, R. S., T. T. Noji & B. V. Bodungen, 1990. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol. 104: 15–23.

    Google Scholar 

  • Legendre, L., S. F. Ackley, G. S. Dieckmann, B. Gulliksen, R. A. Horner, T. Hoshiai, I. A. Melnikov, W. S. Reeburgh, M. Spindler & C. W. Sullivan, 1992. Ecology of sea ice biota. 2. Global significance. Polar Biol. 12: 429–444.

    Google Scholar 

  • Lønne, O. J. & G. W. Gabrielsen, 1992. Summer diet of seabirds feeding in sea-ice covered waters near Svalbard. Polar Biol. 12: 685–692.

    Google Scholar 

  • Lønne, O. J. & B. Gulliksen, 1991a. On the distribution of sympagic macro-fauna in the seasonally ice covered Barents Sea. Polar Biol. 11: 457–469.

    Google Scholar 

  • Lønne, O. J. & B. Gulliksen, 1991b. Source, density and composition of sympagic fauna in the Barents Sea. Polar Res. 10: 289–294.

    Google Scholar 

  • Martin, T. & P. Wadhams, 1996. Ice fluxes within the Greenland Sea and their variability. In Wadhams, P., J. B. Wilkinson & S. C. S. Wells (eds), ESOP Sci. Rep. 1: 72-79.

  • Maykut, G. A., 1985. The ice environment. In Horner, R. A. (ed.), Sea Ice Biota. CRC Press, Boca Raton: 21–82.

    Google Scholar 

  • Melnikov, I. A., 1997. The Arctic sea ice ecosystem. Gordon and Breach Science Publ., Amsterdam: 204 pp.

    Google Scholar 

  • Noji, T. T., 1991. The influence of macrozooplankton on vertical particulate flux. Sarsia 76: 1–9.

    Google Scholar 

  • Noji, T. T., K. W. Estep, F. MacIntyre & F. Norrbin, 1991. Image analysis of faecal material grazed upon by three species of copepods: evidence for coprorhexy, coprophagy and coprochaly. J. mar. biol. Ass. U.K. 71: 465–480.

    Google Scholar 

  • Perissinotto, R. & E. A. Pakhomov, 1998. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, southern Ocean. Mar. Biol. 131: 25–32.

    Google Scholar 

  • Peters, R. H., 1983. The Ecologocal Implications of Body Size. Cambridge Univ. Press, Cambridge: 329 pp.

    Google Scholar 

  • Poltermann, M., 1997. Biologische und ökologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises. Ber. Polarforsch. 225: 1–170.

    Google Scholar 

  • Poltermann, M., 1998. Abundance, biomass and small-scale distribution of cryopelagic amphipods in the Franz Josef Land area (Arctic). Polar Biol. 20: 134–138.

    Google Scholar 

  • Quigley, M. A. & H. A. Vanderploeg, 1991. Ingestion of live filamentous diatoms by the Great Lakes amphipod, Diporeia sp.: a case study of the limited value of gut content analysis. Hydrobiologia 223: 141–148.

    Google Scholar 

  • Rachor, E., 1997. Scientific cruise report of the Arctic expedition ARK-XI/1 of RV 'Polarstern' in 1995. Ber. Polarforsch. 226: 1–157.

    Google Scholar 

  • Ramseier, R. O., E. Bauerfeind & R. Peinert, in press. Sea-ice impact on long term particle flux in the Greenland Sea's Is Odden-Nordbukta region, 1985-1996. J. Geophys. Res.

  • Spindler, M., W. Hagen & D. Stübing, 1998. Scientific cruise report of the Arctic expedition ARK-XIII/1 of RV 'Polarstern' in 1997. Ber. Polarforsch. 296: 1–65.

    Google Scholar 

  • Stretch, J. J., P. P. Hamner, W. M. Hamner, W. C. Michel, J. Cook & C. W. Sullivan, 1988. Foraging behavior of Antarctic krill Euphausia superba on sea-ice microalgae. Mar. Ecol. Prog. Ser. 44: 131–139.

    Google Scholar 

  • Subba Rao, D. V. & T. Platt, 1984. Primary production of Arctic waters. Polar Biol. 3: 191–201.

    Google Scholar 

  • Tremblay, C., J. A. Runge & L. Legendre, 1989. Grazing and sedimentation of ice algae during and immediately after a bloom at the ice-water interface. Mar. Ecol. Prog. Ser. 56: 291–300.

    Google Scholar 

  • Werner, I., 1997a. Ecological studies on the Arctic under-ice habitat-colonization and processes at the ice-water interface. Ber. Sonderforsch. 313 Univ. Kiel 70: 1–167.

    Google Scholar 

  • Werner, I., 1997b. Grazing of Arctic under-ice amphipods on sea-ice algae. Mar. Ecol. Prog. Ser. 160: 93–99.

    Google Scholar 

  • Wheeler, P. A., M. Gosselin, E. Sherr, D. Thibault, D. L. Kirchman, R. Benner & T. E. Whitledge, 1996. Active cycling of organic carbon in the central Arctic Ocean. Nature 380: 697–699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, I. Faecal pellet production by Arctic under-ice amphipods – transfer of organic matter through the ice/water interface. Hydrobiologia 426, 89–96 (2000). https://doi.org/10.1023/A:1003984327103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003984327103

Navigation