Skip to main content
Log in

Lactoferrin and Its biological functions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Lactoferrin, a component of mammalian milk, is a member of the transferrin family. These glycoproteins transfer Fe3+ ions. Lactoferrin is a unique polyfunctional protein that influences cell proliferation and differentiation. It can regulate granulopoiesis and DNA synthesis in some cells. Lactoferrin inhibits prostaglandin synthesis in human milk macrophages and activates the nonspecific immune response by stimulating phagocytosis and complement. It can interact with DNA, RNA, proteins, polysaccharides, heparin-like polyanions, etc.; in some of its effects, lactoferrin is found in complexes with ligands. It was recently demonstrated that lactoferrin also possesses ribonuclease activity and is a transcription factor. The list of known biological activities of lactoferrin is constantly increasing. This review analyzes possible mechanisms of its polyfunctionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Birgens, H. (1985) Scand. J. Haematol., 34, 326–331.

    Google Scholar 

  2. Hansen, N. E., Malmquist, J., and Thorell, J. (1975) Acta Med. Scand., 198, 437–443.

    Google Scholar 

  3. Geng, K., Li, Y., Bezault, J., and Furmanski, P. (1998) Exp. Cell Res., 245, 214–220.

    Google Scholar 

  4. Green, M. R., and Pastewka, J. V. (1978) Endocrinology, 103, 151–163.

    Google Scholar 

  5. Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W., and Baker, E. N. (1989) J. Mol. Biol, 209, 711–734.

    Google Scholar 

  6. Fransson, G. B., and Lonnerdal, B. (1980) J. Pediatr., 96, 380–384.

    Google Scholar 

  7. Ott, V. D., Dukareva, S. V., and Melnikov, O. R. (1993) Vopr. Pitaniya, 1, 6–13.

    Google Scholar 

  8. Davidson, L. A., and Lonnerdal, B. (1988) Am. J. Physiol., 254, G580-G585.

    Google Scholar 

  9. Jameson, G. B., Anderson, B. F., Norris, G. E., Thomas, D. H., and Baker, E. N. (1998) Acta Crystallogr. D. Biol. Crystallogr., 54, 1319–1335.

    Google Scholar 

  10. Anderson, B. F., Baker, H. M., Norris, G. E., Rumball, S. V., and Baker, E. N. (1990) Nature, 344, 784–787.

    Google Scholar 

  11. Van Berkel, P. H., van Veen, H. A., Geerts, M. E., de Boer, H. A., and Nuijens, J. H. (1996) Biochem. J., 319, 117–122.

    Google Scholar 

  12. Legrand, D., Salmon, V., Coddeville, B., Benaissa, M., Plancke, Y., and Spik, G. (1995) FEBS Lett., 365, 57–60.

    Google Scholar 

  13. Van Berkel, P. H., Geerts, M. E., van Veen, H. A., Kooiman, P. M., Pieper, F. R., de Boer, H. A., and Nuijens, J. H. (1995) Biochem. J., 312, 107–114.

    Google Scholar 

  14. Metz Boutigue, M. H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., and Jolles, P. (1984) Eur. J. Biochem., 145, 659–676.

    Google Scholar 

  15. Spik, G., Strecker, G., Fournet, B., Bouquelet, S., Montreuil, J., Dorland, L., van Halbeek, H., and Vliegenthart, J. F. G. (1982) Eur. J. Biochem., 121, 413–419.

    Google Scholar 

  16. Moguilevski, N., Retegui, L. A., and Masson, P. L. (1985) Biochem. J., 229, 353–359.

    Google Scholar 

  17. Sousa, M., and Brock, J. H. (1989) Iron in Immunity Cancer and Inflammation, John Wiley & Sons Ltd.

  18. Masson, P. L., and Heremans, J. F. (1968) Eur. J. Biochem., 6, 579–584.

    Google Scholar 

  19. Arnold, R. R., Brewer, M., and Gauthier, J. J. (1980) Infect. Immun., 28, 893–898.

    Google Scholar 

  20. Arnold, R. R., Cole, M. F., and McGree, J. R. (1977) Science, 197, 263–265.

    Google Scholar 

  21. Ellison, R. T., III, Giehl, T. J., and LaForce, F. M. (1988) Infect. Immun., 56, 2774–2780.

    Google Scholar 

  22. Yi, M., Kaneko, S., Yu, D. Y., and Murakami, S. (1997) J. Virol., 71, 5997–6002.

    Google Scholar 

  23. Fujihara, T., and Hayashi, K. (1995) Arch. Virol., 140, 1469–1472.

    Google Scholar 

  24. Marchetti, M., Longhi, C., Conte, M. P., Pisani, S., Valenti, P., and Seganti, L. (1996) Antiviral Res., 29, 221–231.

    Google Scholar 

  25. Harmsen, M. C., Swart, P. J., de Bethune, M. P., Pawels, R., de Clercq, E., The, T. H., and Meijer, D. K. F. (1995) J. Infect. Dis., 172, 280–288.

    Google Scholar 

  26. Swart, P. J., Kuipers, M. E., Smith, C., Pawels, R., de Bethune, M. P., de Clerck, E., Meijer, D. K. F., and Huisman, J. G. (1996) AIDS Res. Human Retrov., 12, 769–775.

    Google Scholar 

  27. Bi, B. Y., Liu, J. L., Legrand, D., Roche, A. C., Capron, M., Spik, G., and Mazurier, J. (1996) Eur. J. Cell. Biol., 69, 288–296.

    Google Scholar 

  28. McAbee, D. D., and Esbensen, K. (1991) J. Biol. Chem., 266, 23624–23631.

    Google Scholar 

  29. Bennet, R. M., Davis, J., Canpbell, S., and Portnoff, S. (1983) J. Clin. Invest., 71, 611–618.

    Google Scholar 

  30. Bennet, R. M., Merrit, M. M., and Gabor, G. (1986) Br. J. Haematol., 63, 105–117.

    Google Scholar 

  31. Weiss, L. (1969) Int. Rev. Cytol., 26, 63–105.

    Google Scholar 

  32. Yamada, Y., Amagasaki, T., Jacobsen, D. W., and Green, R. (1987) Blood, 70, 264–270.

    Google Scholar 

  33. Harada, E., Itoh, Y., Sitizyo, K., Takeuchi, T., Araki, Y., and Kitagawa, H. (1999) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 124, 321–327.

    Google Scholar 

  34. Hutchens, T. W., Henry, J. F., Yip, T., Hachey, D. L., Schanler, R. J., Motil, K. J., and Garza, C. (1991) Pediatr. Res., 29, 243–250.

    Google Scholar 

  35. Davidson, L. A., and Lonnerdal, B. (1985) Am. J. Clin. Nutr., 41, 852–861.

    Google Scholar 

  36. Bagby, G. C., Jr. (1989) Blood Cells, 15, 386–399.

    Google Scholar 

  37. Galbraith, P. R. (1986) Clin. Invest. Med., 9, 1–5.

    Google Scholar 

  38. Shau, H., Kim, A., and Golub, S. H. (1992) J. Leukoc. Biol., 51, 343–349.

    Google Scholar 

  39. Adamik, B., Zimecki, M., Wlaszczyk, A., Berezowicz, P., and Kubler, A. (1998) Arch. Immunol. Ther. Exp., 46, 169–176.

    Google Scholar 

  40. Kijlstra, A. (1990) Reg. Immunol., 3, 193–197.

    Google Scholar 

  41. Baveye, S., Elass, E., Mazurier, J., Spik, G., and Legrand, D. (1999) Clin. Chem. Lab. Med., 37, 281–286.

    Google Scholar 

  42. Zhang, W., and Lachmann, P. J. (1996) J. Immunol., 156, 2599–2606.

    Google Scholar 

  43. Mann, D. M., Romm, E., and Migliorini, M. (1994) J. Biol. Chem., 269, 23661–23667.

    Google Scholar 

  44. Bi, B. Y., Liu, J. L., Legrand, D., Roche, A. C., Capron, M., Spik, G., and Mazurier, J. (1996) Eur. J. Cell. Biol., 69, 288–296.

    Google Scholar 

  45. Tomita, M., Takase, M., Wakabayashi, H., and Bellamy, W. (1994) Adv. Exp. Med. Biol., 357, 209–218.

    Google Scholar 

  46. Kuwata, H., Yip, T. T., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., and Hutchens, T. W. (1998) Biochem. J., 334, 321–323.

    Google Scholar 

  47. Bennet, R. M., and Davis, J. (1982) J. Lab. Clin. Med., 99, 127–138.

    Google Scholar 

  48. He, J., and Furmanski, P. (1995) Nature, 373, 721–724.

    Google Scholar 

  49. Kanyshkova, T. G., Semenov, D. V., Buneva, V. N., and Nevinsky, G. A. (1999) FEBS Lett., 451, 235–237.

    Google Scholar 

  50. Furmanski, P., Li, Z. P., Fortuna, M. B., Swamy, C. V., and Das, M. R. (1989) J. Exp. Med., 170, 415–429.

    Google Scholar 

  51. Devi, A. S., Das, M. R., and Pandit, M. W. (1994) Biochim. Biophys. Acta, 1205, 275–281.

    Google Scholar 

  52. Garre, C., Bianchi Scarra, G., Sirito, M., Musso, M., and Ravazzolo, R. (1992) J. Cell Physiol., 153, 477–482.

    Google Scholar 

  53. Fleet, J. C. (1995) Nutr. Rev., 53, 226–227.

    Google Scholar 

  54. Baeuerle, P. A. (1995) Nature, 373, 661–662.

    Google Scholar 

  55. Jans, D. A. (1994) FASEB J., 8, 841–847.

    Google Scholar 

  56. Nevinsky, G. A. (1995) Mol. Biol. (Moscow), 29, 16–37.

    Google Scholar 

  57. Bugreev, D. V., and Nevinsky, G. A. (1999) Biochemistry (Moscow), 64, 237–249.

    Google Scholar 

  58. Bennett, R. M., Bagby, G. C., and Davis, J. (1981) Biochem. Biophys. Res. Commun., 101, 88–95.

    Google Scholar 

  59. Bagby, G. C., Jr., and Bennett, R. M. (1982) Blood, 60, 108–112.

    Google Scholar 

  60. Mantel, C., Miyazawa, K., and Broxmeyer, H. E. (1994) Adv. Exp. Med. Biol., 357, 121–132.

    Google Scholar 

  61. Semenov, D. V., Kanyshkova, T. G., Buneva, V. N., and Nevinsky, G. A. (1999) Biochem. Mol. Biol. Int., 47, 177–184.

    Google Scholar 

  62. Semenov, D. V., Kanyshkova, T. G., Akimdzhanov, A. M., Buneva, V. N., and Nevinsky, G. A. (1998) Biochemistry (Moscow), 63, 935–943.

    Google Scholar 

  63. Siebert, P. D., and Huang, B. C. (1997) Proc. Natl. Acad. Sci. USA, 94, 2198–2203.

    Google Scholar 

  64. Cohen, P. (1985) Eur. J. Biochem., 151, 439–440.

    Google Scholar 

  65. Watanabe, T., Nagura, H., Watanabe, K., and Brown, W. R. (1984) FEBS Lett., 168, 203–207.

    Google Scholar 

  66. Meisel, H., and Bockelmann, W. (1999) Antonie Van Leeuwenhoek, 76, 207–215.

    Google Scholar 

  67. Meisel, H. (1997) Biopolymers, 43, 119–128.

    Google Scholar 

  68. Haque, Z. U. (1993) J. Dairy Sci., 76, 311–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanyshkova, T.G., Buneva, V.N. & Nevinsky, G.A. Lactoferrin and Its biological functions. Biochemistry (Moscow) 66, 1–7 (2001). https://doi.org/10.1023/A:1002817226110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002817226110

Navigation