Skip to main content
Log in

Distribution of GAP-43, β-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment

  • Published:
Journal of Neurocytology

Abstract

Brain derived neurotrophic factor (BDNF) when added to explant cultures of both embryonic and adult retinal ganglion cell (RGC) axons exerted a marked effect on their growth cone size and complexity and also on the intensity of GAP-43, ß-III tubulin and F-actin immunoreaction product in their axons. GAP-43 was distributed in axons, lamellipodia, and filopodia whereas ß-III tubulin was distributed along the length of developing and adult regenerating axons and also in the C-domain of their growth cones. BDNF-treated developing RGC growth cones were larger and displayed increased numbers of GAP-43 and microtubule-containing branches. Although filopodia and lamellipodia were lost from both developing and adult RGC growth cones following trkB-IgG treatment, the intensity of the immunoreaction product of all these molecules was reduced and trkB-IgGs had no effect on the axonal distribution of ß-III tubulin and GAP-43. BDNF-treated growth cones also displayed increased numbers of F-actin containing filopodia and axonal protrusions. This study demonstrates, for the first time, that trkB-IgG treatment causes the loss of F-actin in the P-domain of growth cone tips in developing and regenerating RGC axons. Although microtubules and F-actin domains normally remained distinct in cultured growth cones, ß-III tubulin and F-actin overlapped within the growth cone C-domain, and within axonal protrusions of adult RGC axons, under higher concentrations of BDNF. The collapse of RGC growth cones appeared to correlate with the loss of F-actin. In vitro, trkB signalling may therefore be involved in the maintenance and stabilisation of RGC axons, by influencing F-actin polymerisation, stabilisation and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ATKINSON, J., PANNI, M. K. & LUND, R. D. (1999) Effects of neurotrophins on embryonic retinal outgrowth. Developmental Brain Research 112, 173–180.

    Google Scholar 

  • BAETGE, E. E. & HAMMANG, J. P. (1991) Neurite outgrowth in PC12 cells deficient in GAP-43. Neuron 6, 21–63.

    Google Scholar 

  • BENOWITZ, L. I. & PERRONE-BIZZOZERO, N. I. (1991) The relationship of GAP-43 to the development and plasticity of synaptic connections. Annals of the New York Academy of Sciences 627, 58–74.

    Google Scholar 

  • BENOWITZ, L. I. & ROUTTENBERG, A. (1997) GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends in Neuroscience 20, 84–91.

    Google Scholar 

  • BENTLEY, D. & O'CONNOR, T. P. (1994) Cytoskeleton events in growth cone steering. Current Opinion in Neurobiology 4, 43–48.

    Google Scholar 

  • BOSCO, A. & LINDEN, R. (1999) BDNF and NT-4 differentially modulate neurite outgrowth in developing retinal ganglion cells. Journal for Neuroscience Research 57, 759–769.

    Google Scholar 

  • BOTTENSTIEN, J. E. & SATO, G. H. (1979) Growth of a rat neuroblastoma line in serum-free supplemented medium. Proceedings of the National Academy of Sciences USA 76, 514–517.

    Google Scholar 

  • CAMPBELL, S. L., KHOSRAVI-FAR, R., ROSSMAN, K. L., CLARK, G. J. & DER, C. J. (1998) Increasing complexity of Ras signalling. Oncogene 17, 1395–1413.

    Google Scholar 

  • COHEN, A., BRAY, G. M. & AGUAYO, A. J. (1994) Neurotrophin–4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. Journal of Neurobiology 25, 953–959.

    Google Scholar 

  • DAVENPORT, R. W., DOU, P., MILLS, L. R. & KATER, S. B. (1996) Distinct calcium signalling within neuronal growth cones and filopodia. Journal of Neurobiology 131, 1–15.

    Google Scholar 

  • DODD, J. & JESSEL, T. M. (1988) Axon guidance and the patterning of neuronal projections in vertebrates. Science 242, 692–699.

    Google Scholar 

  • DOSTER, S. K., LOZANO, A. M., AGUAYO, A. J. & WILLARD, M. B. (1991) Expression of the growthassociated protein GAP-43 in adult rat retinal ganglion neurons. Developmental Brain Research 28, 121–126.

    Google Scholar 

  • EMST, A. F., GALLO, G., LETOURNEAU, P. C. & MCLOON, S. (2000) Stabilisation of growing retinal axons by the combined signalling of nitric oxide and brain derived neurotrophic factor. Journal of Neuroscience 19, 229–235.

    Google Scholar 

  • FAN, J., MANSFIELD, S. G., REDMOND, T., GORDONWEEKS, P. R. & RAPER, J. A. (1993) The organisation of F-actin and microtubules in growth cones exposed to brain-derived collapsing factor. Journal of Cell Biology 121, 867–878.

    Google Scholar 

  • FERHAT, L., REPRESSA, A., BERNARD, A., BEN-ARI, Y. & KHRESTCHATISKY, M. (1996) MAP2d promotes bundling and stabilisation of both microtubules and microfilaments. Journal of Cell Science 106, 1095–1103.

    Google Scholar 

  • FINKBEINER, S., TAVAZOIE, S. F., MALORATSKY, A., JACOBS, K. M., HARRIS, K. M. & GREENBERG, M. E. (1997) CREB: A major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047.

    Google Scholar 

  • FORSCHER, P. & SMITH, S. J. (1988) Actions of catecholasins on the organisation of actin filaments and microtubules in a neuronal growth cone. Journal of Cell Biology 1070, 1505–1516.

    Google Scholar 

  • FOURNIER, A. E. & MCKERRACHER, L. (1997) Expression of specific tubulin isoforms increases during regeneration of injured CNS neurons, but not after the application of brain derived neurotrophic factor (BDNF). Journal of Neuroscience 15, 4623–4632.

    Google Scholar 

  • FOURNIER, A. E., BEER, J., ARREGUI, C. O., ESSAGIAN, C., AGUAYO, A. J. & MCKERRACHER, L. (1997) Brain derived neurotrophic factor modulates GAP-43 but not Ta1 expression in injured retinal ganglion cells of adult rats. Journal of Neuroscience Research 47, 561–572.

    Google Scholar 

  • FOURNIER, A. E., NAKAMURA, F., KAWAMOTO, S., GOSHIMA, Y., KALB, R. C. & STRITTMATTER, S. M. (2000) Semaphorin3Aenhances endocytosis at sites of F-actin colocalisation during growth cone collapse. Journal of Cell Biology 149, 411–421.

    Google Scholar 

  • FREY, D., LAUX, T., XU, L., SCHEINDER, C. & CARONI, P. (2000) Shared and unique roles of CAP23 and GAP23 in actin regulation, neurite outgrowth and anatomical plasticity. Journal of Cell Biology 149, 1443–1454.

    Google Scholar 

  • GALLO, G. & LETOURNEAU, P. C. (1998) Localised sources of neurotrophins initiate axon collateral sprouting. Journal of Neuroscience 18, 5403–5414.

    Google Scholar 

  • GHOSH, A. & GREENBERG, M. E. (1995) Nerve growth factor activates a Ras-dependent prrotein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713–725.

    Google Scholar 

  • GORDON-WEEKS, P. R. (1991) Control of microtubule assembley in growth cones. Journal of Cell Science Supplement 15, 45–49.

    Google Scholar 

  • GORDON-WEEKS, P. R. & LANG, R. D. A. (1988) The a-tubulin of the growth cone is predominantly in the tyrosinated form. Developmental Brain Research 42, 156–160.

    Google Scholar 

  • GORDON-WEEKS, P. R. & MANSFIELD, S. G. (1992) Assembly of microtubules in growth cones: The rle of microtubule-associated proteins. In The Nerve Growth Cone (edited by LETOURNEAU, P. C., KATER, S. B. & MACAGNO, E. R.) pp. 55–64. Raven, London.

    Google Scholar 

  • GORDON-WEEKS, P. R., MANSFIELD, S. G. & CURRAN, I. (1989) Direct visualisation of the soluble pool of tubulin in the neuronal growth cone: Immunofluorescence studies following taxol polymerisation. Developmental Brain Research 49, 305–310.

    Google Scholar 

  • GOSLIN, K., SCHREYER, D. J., SKENE, J. H. P. & BANKER, G. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 372, 672–674.

    Google Scholar 

  • GRIFFITH, L. M. & POLLARD, T. D. (1982) The interaction of actin filaments with microtubules and microtubule—associated protein. Journal of Biological Chemistry 257, 9143–915.

    Google Scholar 

  • ISENMANN, S., KRETZ, A. & CELLERINO, A. (2003) Molecular determinants of retinal ganglion cell development, survival and regeneration. Progress in Retinal and Eye Research 22, 483–543.

    Google Scholar 

  • KATER, S. B. & MILLS, L. R. (1991) Regulation of growth cone behaviour by calcium. Journal of Neuroscience 11, 891–899.

    Google Scholar 

  • LAUX, T., FUKAMI, K., THELAN, M., GOLUB, T., FREY, D. & CARONI, P. (2000) GAP43 MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. Journal of Cell Biology 149, 1455–1472.

    Google Scholar 

  • LETOURNEAU, P. C. (1996) The cytoskeleton in nerve growth cone motility and axonal pathfinding. Perspectives in Developmental Neurobiology 4, 111–123.

    Google Scholar 

  • LETOURNEAU, P. C. & RESSLER, A. H. (1983) Differences in the organisation of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. Journal of Cell Biology 97, 963–973.

    Google Scholar 

  • LIN, C. H. & FORSCHER, P. (1993) Cytoskeletal remodeling during growth cone-target interactions. Journal of Cell Biology 121, 1369–1383.

    Google Scholar 

  • LIN, C. H., THOMPSON, C. A. & FORSCHER, P. (1994) Cytoskeletal reorganisation underlying growth cone motility. Current Opinion in Neurobiology 46, 640–647.

    Google Scholar 

  • LUO, L., JAN, L. Y. & JAN, Y. N. (1997) Rho family small GTP-binding proteins in growth cone signalling. Current Opinion in Neurobiology 7, 81–86.

    Google Scholar 

  • MCKERRACHER, L., ESSAGIAN, C. & AGUAYO, A. J. (1993) Marked increase in ß-tubulin mRNA expression during regeneration of axotomised retinal ganglion cells in mammals. Journal of Neuroscience 13, 5294–5300.

    Google Scholar 

  • MANDELKOW, E. & MANDELKOW, E. M. (1995) Microtubules and microtubule-associated proteins. Current Opinion in Cell Biology 7, 72–81.

    Google Scholar 

  • MEYER, R. L., MIOTKE, J. A. & BENOWITZ, L. I. (1994) Injury induced expression of growth-associated protein-43 in adult mouse retinal ganglion cells in vitro. Neuroscience 63, 591–602.

    Google Scholar 

  • NEEDHAM, L. K., TENNEKOON, G. I. & MCKHAAN, G. M. (1987) Selective growth of rat Schwann cells in neuron and serum free primary culture. Journal of Neuroscience 7, 1–9.

    Google Scholar 

  • NEELY, M. D. & NICHOLLS, J. G. (1995) Electrical activity, growth cone motility and the cytoskeleton. Journal of Experimental Biology 198, 1433–1446.

    Google Scholar 

  • NORDEN, J. J., LETTES, A., COSTELLO, B., LIN, L. H., WOUTERS, B., BOCK, A. & FREEMAN, J. A. (1991) Possible role of GAP-43 in calcium regulation/ neurotransmitter release. Annals of the New York Academy of Sciences 627, 75–93.

    Google Scholar 

  • O'CONNOR, T. P. & BENTLEY, D. (1993) Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial cues in situ. Journal of Cell Biology 11, 1918–1927.

    Google Scholar 

  • OKABE, S. & HIROKAWA, N. (1991) Actin dynamics in growth cones. Journal of Neuroscience 11, 1918–1927.

    Google Scholar 

  • PAVES, H. & SAARMA, M. (1997) Neurotrophins as in vitro guidance molecules for embryonic sensory neurons. Cell and Tissue Research 290, 285–297.

    Google Scholar 

  • POLLARD, T. D. & COOPER, J. A. (1986) Actin and binding proteins. A critical evaluation of mechanisms and functions. Annual Reviews in Biochemistry 55, 987–1035.

    Google Scholar 

  • POLLARD, T. D., GOLDBERG, I. & SCHWARTZ, W. H. (1992) Nucleotide exchange, structure and mechanical properties of filaments assembled from ATPactin and ADP-actin. Journal of Biological Chemistry 1267, 20339–20345.

    Google Scholar 

  • RIDLEY, A. J. (1999) Rac and Rho. Current Biology 9, R156.

    Google Scholar 

  • RIDLEY, A. J. (1999) Rho family proteins and regulation of the actin cytoskeleton. Progress in Molecular Cell Biology 22, 1–22.

    Google Scholar 

  • SABRY, J., O'CONNOR, T. P. & KRISHNER, T. P. (1995) Axonal transport of tubulin in Til pioneer neurons. Neuron 14, 1247–1256.

    Google Scholar 

  • SAWAI, H., CLARKE, D. B., KITTLEROVA, P., BRAY, G. M. & AGUAYO, A. J. (1996) Brain-derived neurotrophic factor and neurotrophin-4/5 stimulated growth of axonal branches fromregenerating retinal ganglion cells. Journal of Neuroscience 16, 3887–3894.

    Google Scholar 

  • SCHWAB, M. E. (1996) Structural plasticity of the adult CNS. Negative control by neurite growth inhibitory signals. International Journal of Neuroscience 14, 379–385.

    Google Scholar 

  • SHELTON, D. L., SUTHERLAND, J., GRIPP, J., CAMERATO, T., ARMANINI, M. P., PHILLIPS, H. S., CARROLL, K., SPENCER, S. D. & LEVINSON, A. D. (1995) Human trks: Molecular cloning, tissue distribution and expression of extracellular domain immunoadhesions. Journal of Neuroscience 15, 477– 491.

    Google Scholar 

  • SHIEH, P. B. & GHOSH, A. (1999) Molecular mechanisms underlying activity-dependent regulation of BDNF expression. Journal of Neurobiology 41, 127–134.

    Google Scholar 

  • SKENE, J. H. P. (1989) Axonal growth-associated protein. Annual Reviews in Neuroscience 12, 127–156.

    Google Scholar 

  • SMITH, S. J. (1988) Neuronal cytomechanics: The actinbased motility of growth cones. Science 242, 708–715.

    Google Scholar 

  • THANOS, S., BAHR, M., BARDE, Y. A. & VANSELOW, J. (1989) Survival and axon elongation of adult rat retinal ganglion cells: In vitro effects of lesioned sciatic nerve and brain-derived neurotrophic factor. European Journal of Neuroscience 1, 19–26.

    Google Scholar 

  • THANOS, S. & VANSELOW, J. (1989) Adult retinal ganglion cells retain the ability to regenerate their axons up to several weeks after axotomy. Journal of Neuroscience Research 22, 144–149.

    Google Scholar 

  • VAUDANO, E., CAMPBELL, G., ANDERSON, P. N., DAVIES, A. P., WOOLHEAD, C., SCHREYER, D. J. & LIEBERMAN, A. R. (1995) The effects of a lesion or a peripheral nerve graft on GAP-43 upregulation in the adult rat brain: An in situ hybridisation and immunocytochemical study. Journal of Neuroscience 15, 3594–3611.

    Google Scholar 

  • WILLIAMSON, T., GORDON-WEEKS, P. R., SCHACHNER, M. & TAYLOR, J. (1996) Microtubule reorganisation is obligatory for growth cone turning. Proceedings of the National Academy of Sciences USA 93, 15221–15226.

    Google Scholar 

  • YAMADA, K. M., SPOONER, B. S. & WESSELLS, N. K. (1970) Axonal growth: Roles of microfilaments and microtubules. Proceedings of the National Academy of Sciences USA 66, 1206–1212.

    Google Scholar 

  • YU, W., AHMAD, F. J. & BAAS, P. W. (1994) Microtubule fragmentation and partitioning in the axon during collateral branch formation. Journal of Neuroscience 114, 5872–5884.

    Google Scholar 

  • ZHANG, H. L., SINGER, R. H. & BASSELL, G. J. (1999) Neurotrophin regulation of ß-actin mRNA and protein localisation within growth cones. Journal of Cell Biology 147, 59–70.

    Google Scholar 

  • ZHU, Q. & JULIEN, J. P. (1991) Akey role for GAP-43 in the retinotectal topographic organisation. Experimental Neurology 155, 228–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Bird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avwenagha, O., Campbell, G. & Bird, M.M. Distribution of GAP-43, β-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment. J Neurocytol 32, 1077–1089 (2003). https://doi.org/10.1023/B:NEUR.0000021903.24849.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000021903.24849.6c

Keywords

Navigation