Skip to main content
Log in

Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supported platinum electrocatalysts are generally used in low temperature fuel cells to enhance the rates of the hydrogen oxidation and oxygen reduction reactions. In such catalysts, the high surface to volume ratios of the platinum particles maximize the area of the surfaces available for reaction. It is the structure and proper dispersal of these platinum particles that make low-loading catalysts feasible for fuel cell operation, lowering the cost of the system. If the platinum particles cannot maintain their structure over the lifetime of the fuel cell, change in the morphology of the catalyst layer from the initial state will result in a loss of electrochemical activity. This loss of activity in the platinum/carbon catalysts due to the agglomeration of platinum particles is considered to be a major cause of the decrease in cell performance, especially in the case of the cathode. In the light of the latest advances on this field, this paper reviews the preparation methods of these catalysts, their microstructural characteristic and their effect on both thermal and in cell conditions stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Antolini, Mater. Chem. Phys. 78 (2003) 563.

    Google Scholar 

  2. S. Mukerjee, J. Appl. Electrochem. 20 (1990) 537.

    Google Scholar 

  3. F. Rodriguez-Reinoso, Carbon 36 (1998) 159.

    Google Scholar 

  4. E. Auer, A. Freund, J. Pietsch and T. Tacke, Appl. Catal. A 173 (1998) 259.

    Google Scholar 

  5. L. B. Okhlopkova, A. S. Lisitsyn, V. A. Likholobov, M. Gurrath and H. P. Boehm, ibid. 204 (2000) 229.

    Google Scholar 

  6. M. A. Fraga, E. Jordao, M. J. Mendes, M. M. A. Freitas, J. L. Faria and J. L. Figueredo, J. Catal. 209 (2002) 355.

    Google Scholar 

  7. E. Czaran, J. Finster and K. H. Schnabel, Z. Anorg. Allg. Chem. 443 (1978) 175.

    Google Scholar 

  8. H. E. van Dam and H. van Bekkum, J. Catal. 131 (1991) 335.

    Google Scholar 

  9. F. Coloma, A. Sepulveda-Escribano, J. L. Fierro and F. Rodriguez-Reinoso, Langmuir 10 (1994) 750.

    Google Scholar 

  10. S. R. De Miguel, O. A. Scelza, M. C. Roman-Martinez, C. Salinas-Martinez, D. Cazorla-Amoros and A. Linares-Solano, Appl. Catal. A 170 (1998) 93.

    Google Scholar 

  11. G. C. Torres, E. I. Iablonski, G. T. Baronetti, A. A. Castro, S. R. De Miguel, O. A. Scelza, M. D. Blanco, M. A. Pena Jimenez and J. L. G. Fierro, ibid. 161 (1997) 213.

    Google Scholar 

  12. A. Sepulveda-Escribano, F. Coloma and F. Rodriguez-Reinoso, ibid. 173 (1998) 247.

    Google Scholar 

  13. P. J. Carrott, M. M. Carrott, A. J. Candeias and J. P. Ramalo, J. Chem. Soc. Faraday Trans. 91 (1995) 2179.

    Google Scholar 

  14. A. Polania, E. Papirer, J. B. Donnett and G. Dagois, Carbon 31 (1993) 473.

    Google Scholar 

  15. H. P. Boehm, ibid. 32 (1994) 759.

    Google Scholar 

  16. M. V. Lopez-Ramon, F. Stoekli, C. Moreno-Castilla and F. Carrasco-Marin, ibid. 37 (1999) 1215.

    Google Scholar 

  17. S. S. Barton, M. J. B. Evans, E. Halliop and J. A. F. Macdonald, ibid. 35 (1997) 1361.

    Google Scholar 

  18. C. A. Leon, Y. Leon, J. M. Solar, V. Calemma and L. R. Radovic, ibid. 30 (1992) 797.

    Google Scholar 

  19. J. F. Lambert and M. Che, J. Mol. Catal. A 162 (2000) 5.

    Google Scholar 

  20. M. C. Roman-Martinez, D. Cazorla-Amoros, A. Linares-Solano and C. S. M. Lecea, Carbon 33 (1995) 3.

    Google Scholar 

  21. S. R. Miguel, O. A. Scelza, M. C. Roman-Martinez, C. S. M. Lecea, D. Cazorla-Amoros and A. Linares-Solano, Appl. Catal. A 170 (1998) 93.

    Google Scholar 

  22. L. D. Ageeva, N. A. Kolpakova, T. V. Kovyrkyna, N. P. Potsyapun and A. S. Buinovskii, J. Anal. Chem. 56 (2001) 137.

    Google Scholar 

  23. D. S. Cameron, S. J. Cooper, I. L. Dodgson, B. Harrison and J. W. Jenkins, Catal. Today 7 (1990) 113.

    Google Scholar 

  24. C. Prado-Burguete, A. Linares-Solano, F. Rodriguez-Reinoso and C. S. M. Lecea, J. Catal. 115 (1989) 98.

    Google Scholar 

  25. D. J. Suh, T. J. Park and S. K. Ihm, Carbon 31 (1993) 427.

    Google Scholar 

  26. P. Ehrburger, O. P. Majahan and P. L. Jr. Walker, J. Catal. 43 (1976) 61.

    Google Scholar 

  27. A. Guerriero-Ruiz, P. Badenes and I. Rodriguez-Ramos, Appl. Catal. A 173 (1998) 313.

    Google Scholar 

  28. M. Watanabe, M. Uchida and S. Motoo, J. Electroanal. Chem. 229 (1987) 395.

    Google Scholar 

  29. H. G. Petrow and R. J. Allen, U.S. Patent no. 4,044,193 (1977).

  30. E. Antolini, L. Giorgi, F. Cardellini and E. Passalacqua, J. Solid State Electrochem. 5 (2001) 131.

    Google Scholar 

  31. N. Giordano, E. Passalacqua, L. Pino, A. S. AricÒ, V. Antonucci, M. Vivaldi and K. Kinoshita, Electrochimica Acta 36 (1991) 1979.

    Google Scholar 

  32. Y. Nakao and K. Kaeriyama, J. Colloid Interface Sci. 110 (1986) 82.

    Google Scholar 

  33. D. Duff, T. Mallat, M. Schneider and A. Baiker, Appl. Catal. A 133 (1995) 133.

    Google Scholar 

  34. N. Toshima and K. Hirakawa, Polym. J. 31 (1999) 1127.

    Google Scholar 

  35. A. Honji, T. Mori, K. Tamura and Y. Hishinuma, J. Electrochem. Soc. 135 (1988) 355.

    Google Scholar 

  36. X. Wang and I.-M. Hsing, Electrochimica Acta 47 (2002) 2981.

    Google Scholar 

  37. J. Mcbreen, H. Olender, S. Srinivasan and K. Kordesch, J. Appl. Electrochem. 11 (1981) 787.

    Google Scholar 

  38. M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda and A. Ohta, J. Electrochem. Soc. 142 (1995) 2572.

    Google Scholar 

  39. M. Watanabe, H. Sei and P. Stonehart, J. Electroanal. Chem. 261 (1989) 375.

    Google Scholar 

  40. M. Watanabe, S. Saegusa and P. Stonehart, Chem. Lett. 9 (1989) 1487.

    Google Scholar 

  41. A. Honji, T. Mori, K. Tamura and Y. Hishinuma, J. Electrochem. Soc. 137 (1990) 2084.

    Google Scholar 

  42. H. Bonnemann, G. Braun, W. Brijoux, R. Brinkmann, A. Tilling, K. Seevogel and K. Siepen, J. Organomet. Chem. 520 (1996) 143.

    Google Scholar 

  43. A. Stoyanova, V. Naidenov, K. Petrov, I. Nikolov, T. Vitanov and E. Budevski, J. Appl. Electrochem. 29 (1999) 1197.

    Google Scholar 

  44. K. Tsurumi, T. Nakamura and A. Sato, U.S. Patent no. 4,956,331 (1990).

  45. E. Antolini, F. Cardellini, E. Giacometti and G. Squadrito, J. Mater. Sci. 37 (2002) 133.

    Google Scholar 

  46. T. Torre, A. S. AricÒ, V. Alderucci, V. Antonucci and N. Giordano, Appl. Catal. A 114 (1994) 257.

    Google Scholar 

  47. V. M. Jalan and C. L. Bushnell, U.S. Patent no. 4,136,056 (1979).

  48. V. M. Jalan, in “Extended Abstracts, Meeting Electrochemical Society” (Montreal, Canada, 1982).

  49. M. Vaarkamp, J. T. Miller, F. S. Modica, G. S. Lane and D. C. Koningberger, J. Catal. 138 (1992) 675.

    Google Scholar 

  50. S. C. Roy, P. A. Christensen, A. Hamnett, K. M. Thomas and V. Trapp, J. Electrochem. Soc. 143 (1996) 3073.

    Google Scholar 

  51. S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. Mcbreen, ibid. 142 (1995) 1409.

    Google Scholar 

  52. A. Pebler, ibid. 133 (1986) 9.

    Google Scholar 

  53. I. J. Hillenbrand and J. W. Lacksonen, ibid. 112 (1965) 249.

    Google Scholar 

  54. J. Escard, C. Leclerc and J. P. Contour, J. Catal. 29 (1973) 31.

    Google Scholar 

  55. J. C. Vedrine, M. Dufaux, C. Naccache and B. Imelik, J. Chem. Soc. Faraday Trans. 74 (1978) 440.

    Google Scholar 

  56. A. K. Shukla, M. K. Ravikumar, A. Roy, S. R. Barman, D. D. Sarma, A. S. AricÒ, V. Antonucci, L. Pino and N. Giordano, J. Electrochem. Soc. 141 (1994) 1517.

    Google Scholar 

  57. K. L. Mittal, J. Vac. Sci. Technol. 13 (1976) 19.

    Google Scholar 

  58. M. G. Mason, Phys. Rev. B 27 (1983) 748.

    Google Scholar 

  59. T. T. P. Cheung, Surf. Sci. 140 (1984) 151.

    Google Scholar 

  60. W. Eberhardt, P. Fayet, D. M. Cox, Z. Fu, A. Kaldor, R. Sherwood and D. Sondericker, Phys. Rev. Lett. 64 (1990) 780.

    Google Scholar 

  61. K. Kinoshita, J. Electrochem. Soc. 137 (1990) 845.

    Google Scholar 

  62. W. Romanowski, Surf. Sci. 18 (1969) 373.

    Google Scholar 

  63. V. M. Jalan, in “Extended Abstracts” (Meeting Electrochemical Society, Los Angeles, CA, 1979).

  64. M. L. Sattler and P. N. Ross, Ultramicroscopy 20 (1986) 21.

    Google Scholar 

  65. M. Komiyama, J. Kobayashi and S. Morica, J. Vac. Sci. Tech. 8 (1990) 608.

    Google Scholar 

  66. R. van Hardeveld and A. van Montfoort, Surf. Sci. 4 (1966) 396.

    Google Scholar 

  67. R. van HARDEVELD and F. Hartog, ibid. 15 (1969) 189.

    Google Scholar 

  68. A. C. C. Tseung and S. C. Dhara, Electrochimica Acta 20 (1975) 681.

    Google Scholar 

  69. K. F. Blurton, H. R. Kunz and D. R. Rutt, ibid. 23 (1978) 183.

    Google Scholar 

  70. P. Bindra, S. Clouser and E. Yeager, J. Electrochem. Soc. 126 (1979) 1631.

    Google Scholar 

  71. G. A. Gluver, R. F. Pascoe and H. R. Kunz, ibid. 127 (1980) 1219.

    Google Scholar 

  72. B. C. Beard and P. N. Ross, ibid. 137 (1990) 3368.

    Google Scholar 

  73. M. Pourbaix, “Atlas of Electrochemical Equilibrium in Aqueous Solutions,” 1st ed. (Pergamon Press, Bristol, England, 1966).

    Google Scholar 

  74. P. J. Hyde, C. J. Maggiore and S. Srinivasan, J. Electroanal. Chem. 168 (1984) 383.

    Google Scholar 

  75. J. A. Bett, K. Kinoshita and P. Stonehart, J. Catal. 41 (1976) 124.

    Google Scholar 

  76. P. Stonehart and P. A. Zucks, Electrochimica Acta 17 (1972) 2333.

    Google Scholar 

  77. J. P. MEYERS and R. M. DARLING, in “Extended Abstracts” (Meeting Electrochemical Society, Salt clLake City, UT, 2002).

  78. C. L. Bushnell and V. M. Jalan, U.S. Patent no. 4,137,372, (1979).

  79. G. A. Gruver, J. Electrochem. Soc. 125 (1978) 1719.

    Google Scholar 

  80. P. Stonehart, Carbon 22 (1984) 423.

    Google Scholar 

  81. S. Mukerjee and S. Srinivasans J. Electroanal. Chem. 357 (1993) 201.

    Google Scholar 

  82. J. A. Bett, K. Kinoshita and P. Stonehart, J. Catal. 35 (1974) 307.

    Google Scholar 

  83. M. Min, J. Cho, K. Cho and H. Kim, Electrochimica Acta 45 (2000) 4211.

    Google Scholar 

  84. U. Bardi and P. N. Ross, J. Vac. Sci. Technol. A 2 (1984) 1461.

    Google Scholar 

  85. L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Electrochimica Acta 43 (1998) 3675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antolini, E. Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. Journal of Materials Science 38, 2995–3005 (2003). https://doi.org/10.1023/A:1024771618027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024771618027

Keywords

Navigation