Skip to main content
Log in

Asymptotics for Sums of Random Variables with Local Subexponential Behaviour

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study distributions F on [0,∞) such that for some T ≤ ∞, F *2(x, x+T] ∼ 2F(x, x+T]. The case T = ∞ corresponds to F being subexponential, and our analysis shows that the properties for T < ∞ are, in fact, very similar to this classical case. A parallel theory is developed in the presence of densities. Applications are given to random walks, the key renewal theorem, compound Poisson process and Bellman–Harris branching processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Asmussen, S. (1987). Applied Probability and Queues, Wiley, Chichester (2nd ed. (2003) Springer, New York).

    Google Scholar 

  2. Asmussen, S. (2000). Ruin Probabilities, World Scientific, Singapore.

    Google Scholar 

  3. Asmussen, S. (1998). A probabilistic look at the Wiener-Hopf equation. SIAM Rev. 40, 189–201.

    Google Scholar 

  4. Asmussen, S., Kalashnikov, V., Konstantinides, D., Klüppelberg, C., and Tsitsiashvili, G. (2002). A local limit theorem for random walk maxima with heavy tails. Statist. Probab. Lett. 56, 399–404.

    Google Scholar 

  5. Athreya, K., and Ney, P. (1972). Branching Processes, Springer, Berlin.

    Google Scholar 

  6. Bertoin, J., and Doney, R. A. (1994). On the local behaviour of ladder height distributions. J. Appl. Probab. 31, 816–821.

    Google Scholar 

  7. Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory, Springer, Berlin.

    Google Scholar 

  8. Callaert, H., and Cohen, J. W. (1972). A lemma on regular variation of a transient renewal function. Z. Wahr. Verw. Gebiete 24, 275–278.

    Google Scholar 

  9. Chistyakov, V. P. (1964). A theorem on sums of independent positive random variables and its application to branching random processes. Theory Probab. Appl. 9, 640–648.

    Google Scholar 

  10. Chover, J., Ney, P., and Wainger, S. (1973). Functions of probability measures. J. Anal. Math. 26, 255–302.

    Google Scholar 

  11. Chover J., Ney P., and Wainger S. (1973). Degeneracy properties of subcritical branching processes. Ann. Probab. 1, 663–673.

    Google Scholar 

  12. Cohen, J. W. (1973). Some results on regular variation for distributions in queueing and fluctuation theory. J. Appl. Probab. 10, 343–353.

    Google Scholar 

  13. Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, Springer, Berlin.

    Google Scholar 

  14. Embrechts, P., and Goldie, C. M. (1982). On convolution tails. Stochastic Process. Appl. 13, 263–278.

    Google Scholar 

  15. Embrechts, P., Goldie, C. M., and Veraverbeke, N. (1979). Subexponentiality and infinite divisibility. Z. Wahr. Verw. Gebiete 49, 335–347.

    Google Scholar 

  16. Embrechts, P., and Veraverbeke, N. (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math. Econom. 1, 55–72.

    Google Scholar 

  17. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York.

    Google Scholar 

  18. Foss, S., and Zachary, S. (2003). The maximum on a random time interval of a random walk with long-tailed increments and negative drift. Ann. Appl. Probab. 13, 37–53.

    Google Scholar 

  19. Harris, T. (1963). The Theory of Branching Processes, Springer, Berlin.

    Google Scholar 

  20. Klüppelberg, C. (1989). Subexponential distributions and characterization of related classes. Probab. Theory Related Fields 82, 259–269.

    Google Scholar 

  21. Korshunov, D. (1997). On distribution tail of the maximum of a random walk. Stochastic Process. Appl. 72, 97–103.

    Google Scholar 

  22. Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (1998). Stochastic Processes for Insurance and Finance, Wiley, Chichester.

    Google Scholar 

  23. Sgibnev, M. S. (1981). Banach algebras of functions that have identical asymptotic behaviour at infinity. Siberian Math. J. 22, 179–187.

    Google Scholar 

  24. Teugels, J. L. (1975). The class of subexponential distributions. Ann. Probab. 3, 1000–1011.

    Google Scholar 

  25. Veraverbeke, N. (1977). Asymptotic behavior of Wiener-Hopf factors of a random walk. Stochastic Process. Appl. 5, 27–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Foss, S. & Korshunov, D. Asymptotics for Sums of Random Variables with Local Subexponential Behaviour. Journal of Theoretical Probability 16, 489–518 (2003). https://doi.org/10.1023/A:1023535030388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023535030388

Navigation